
WHEN IS THE AUTOMORPHISM GROUP OF AN AFFINE
VARIETY LINEAR?

ANDRIY REGETA

Abstract. Let Autalg(X) be the subgroup of the group of regular automorphisms
Aut(X) of an affine algebraic variety X generated by all connected algebraic subgroups.
We prove that if dimX ≥ 2 and if Autalg(X) is “rich enough”, Autalg(X) is not linear,
i.e., it cannot be embedded into GLn(F), where K is an algebraically closed field of
characteristic zero and F is a field. Moreover, Aut(X) is isomorphic to an algebraic
group as an abstract group only if the connected component of Aut(X) is either the
algebraic torus or a direct limit of commutative unipotent groups. Finally, we prove
that for an uncountable K the group of birational transformations of X cannot be
isomorphic to the group of automorphisms of an affine variety if X is endowed with a
rational action of a positive-dimensional linear algebraic group.

1. Introduction

In this paper we work over algebraically closed field K of characteristic zero, and X
always denotes an irreducible affine variety. It is well-known that the automorphism
group of an affine variety may be very large. For example, the automorphism group
Aut(A2) of the affine plane A2 contains a free product of two polynomial rings in one
variable. Consequently, Aut(A2) is infinite-dimensional and cannot be given a structure
of an algebraic group. Moreover, it is shown in [3, Proposition 2.3] that Aut(A2) is
not linear, i.e. Aut(A2) cannot be embedded into the general linear group GLn(K) as
an abstract group. The first main result of the present note is a generalization of this
statement to a big family of affine varieties.

It is well-known (Proposition 2.3) that the automorphism group Aut(X) has a structure
of an ind-group (see Section 2.2 for the definition) and if dimX ≥ 2, Aut(X) is infinite-
dimensional unless Aut(X) is a countable extension of the algebraic torus. But even if the
automorphism group Aut(X) is infinite-dimensional it may happen that Aut(X) embeds
into GLn(K). For exmaple, [10, Example 6.14] shows that there is an affine surface S such
that Aut(S) is isomorphic to the polynomial ring in one variable K[t] and as an abstract
additive group Aut(S) is isomorphic to the additive group of the base field and hence
embeds into GL2(K). However, if Aut(X) is rich enough, Aut(X) cannot be embedded
into GLn(K). More precisely, we prove the following statement.

We denote the additive and multiplicative group of the field K by Ga and Gm respec-
tively. For a given affine variety X we denote by Autalg(X) the subgroup of Aut(X)
generated by all connected algebraic subgroups.

Theorem 1.1. Assume X is at least two-dimensional variety such that Aut(X) contains
an algebraic subtorus T ≃ Gk

m, k ≥ 1, a root subgroup U ⊂ Aut(X) and the invariant
subrings O(X)T ,O(X)U ⊂ O(X) do not coincide. Then Autalg(X) cannot be embedded
into GLn(F) for any field F.

The assumption in Theorem 1.1 is necessary. Indeed, consider X isomorphic to A1×C,
where C is a smooth affine curve having trivial automorphism group and no non-constant
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invertible regular functions. By Remark 3.2 Aut(X) is isomorphic to Gm⋉O(C)+ which
can be embedded into K(C)∗ ⋉K(C)+, where K(C) is the function field of C.

If X admits no Gm-action, but admits two non-commuting Ga-actions, Aut(X) can be
embedded into GLn(K). For example, there exists an affine surface X (see [1, Example
4.1.3]) that has an automorphism group Aut(X) = Autalg(X) ≃ K[x] ∗ K[y] which is
linear by [11, Theorem] as additive groups K[x] ≃ K[y] are isomorphic as abstract groups
to Ga.

The second question we study is whether the automorphism group of an affine variety
can be isomorphic to a linear algebraic group. More precisely, we have the following
statement which is the main result of the paper.

Theorem 1.2. Let X be an affine variety. If Aut(X) is isomorphic to a linear alge-
braic group as an abstract group, then the connected component Aut◦(X) is commutative.
Moreover, in this case Aut◦(X) is either the algebraic torus or a direct limit of commu-
tative unipotent groups.

We denote by Bir(X) the group of birational transformations of X. It is well-known
that such a group may be very large. For example the Cremona group Bir(An) = Bir(Pn)
for n > 1 is known to be very big, in particular, much larger than Aut(An). Proposition
5.1 shows that the Cremona group Bir(An) = Bir(Pn), n > 0, is not isomorphic to the
automorphism group of any affine variety. Moreover, if Bir(X) is “rich enough”, Bir(X)
is also not isomorphic to the automorphism group of any affine variety. More precisely,
we prove the following statement.

Theorem 1.3. Assume K is uncountable and X, Y are affine irreducible algebraic va-
rieties. Assume X is endowed with a rational action of a positive-dimensional linear
algebraic group. Then the group of birational transformations Bir(X) is not isomorphic
to Aut(Y ).

Acknowledgements : I would like to thank Ivan Arzhantsev and Ievgen Makedonskyi
for useful comments.

2. Preliminaries

2.1. Derivations and group actions. Recall that X is an irreducible affine algebraic
variety. A derivation δ is called locally finite if it acts locally finitely on O(X), i.e., for any
function f ∈ O(X) there is a finite-dimensional vector subspace W ⊂ O(X) such that
f ∈ W and W is stable under action of δ. A derivation δ ∈ Der(O(X)) is called locally
nilpotent if for any function f ∈ O(X) there exists k ∈ N (which depends on f) such
that δk(f) = 0. Note that there is a one-to-one correspondence between locally nilpotent
derivations on O(X) and Ga-actions on X given by the map δ 7→ {t 7→ exp(tδ)}.

An element u ∈ Aut(X) is called unipotent if u = exp(∂) for some locally nilpotent
derivation ∂.

2.2. Ind-groups. The notion of an ind-group goes back to Shafarevich who called it
an infinite dimensional algebraic group (see [17]). We refer to [5] for basic notions in this
context.

Definition 2.1. By an affine ind-variety we understand an injective limit V = lim−→Vi of
an ascending sequence V0 ↪→ V1 ↪→ V2 ↪→ . . . such that the following holds:

(1) V =
⋃

k∈N Vk;
(2) each Vk is an affine algebraic variety;
(3) for all k ∈ N the embedding Vk ↪→ Vk+1 is closed in the Zariski topology.
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For simplicity we will call an affine ind-variety simply an ind-variety.
An ind-variety V has a natural topology : a subset S ⊂ V is called closed, resp. open,

if Sk := S ∩ Vk ⊂ Vk is closed, resp. open, for all k ∈ N. A closed subset S ⊂ V has a
natural structure of an ind-variety and is called an ind-subvariety.

A set theoretical product of ind-varieties admits a natural structure of an ind-variety.
A morphism between ind-varieties V =

⋃
m Vm and W =

⋃
lWl is a map ϕ : V → W

such that for every m ∈ N there is an l ∈ N such that ϕ(Vm) ⊂ Wl and that the induced
map Vm → Wl is a morphism of algebraic varieties. This allows us to give the following
definition.

Definition 2.2. An ind-variety H is said to be an ind-group if the underlying set H is
a group such that the map H × H → H, defined by (g, h) 7→ gh−1, is a morphism of
ind-varieties.

A closed subgroup G of H is a subgroup that is at the same time a closed subset. In
this case G is again an ind-group with respect to the induced ind-variety structure. A
closed subgroup G of an ind-group H = lim−→Hi is called an algebraic subgroup if G is
contained in Hi for some i.

The next result can be found in [5, Section 5].

Proposition 2.3. Let X be an affine variety. Then Aut(X) has the structure of an
ind-group such that a regular action of an algebraic group H on X induces an ind-group
homomorphism H → Aut(X).

2.3. Root subgroups. In this section we describe root subgroups of Aut(X) for a given
affine variety X with respect to a subtorus.

Definition 2.4. Let T be a subtorus in Aut(X), i.e. a closed algebraic subgroup isomor-
phic to a torus. A closed algebraic subgroup U ⊂ Aut(X) isomorphic to Ga is called a
root subgroup with respect to T if the normalizer of U in Aut(X) contains T .

Since Ga contains no non-trivial closed normal subgroups, every non-trivial regular
action is faithful. Hence, such an algebraic subgroup U corresponds a non-trivial nor-
malized Ga-action on X, i.e. a Ga-action on X whose image in Aut(X) is normalized by
T .

Assume U ⊂ Aut(X) is a root subgroup with respect to T . Since T normalizes U , we
can define an action φ:T → Aut(U) of T on U given by t.u = t ◦ u ◦ t−1 for all t ∈ T
and u ∈ U . Moreover, since Aut(U) ≃ Gm, such an action corresponds to a character
of the torus χ:T → Gm, which does not depend on the choice of isomorphism between
Aut(U) and Gm. This character is called the weight of U . The algebraic subgroups T
and U generate an algebraic subgroup in Aut(X) isomorphic to Ga ⋊χ T .
Consider a nontrivial algebraic action of Ga on X, given by λ:Ga → Aut(X). If

f ∈ O(X) is Ga-invariant, then the modification f ·λ of λ is defined in the following way:

(f · λ)(r)x = λ(f(x)r)x

for r ∈ C and x ∈ X. This is again a Ga-action. It is not difficult to see that if X is
irreducible and f ̸= 0, then f · λ and λ have the same invariants. If U ⊂ Aut(X) is a
closed algebraic subgroup isomorphic to Ga and if f ∈ O(X)U is a U -invariant, then in a
similar way we define the modification f · U of U . Pick an isomorphism λ:Ga → U and
set

f · U = {(f · λ)(r) | r ∈ Ga}.
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2.4. Divisible elements. We call an element f in a group G divisible by n if there exists
an element g ∈ G such that gn = f . An element is called divisible if it is divisible by all
n ∈ Z+. If G is an agebraic group, then by [10, Lemma 3.12] for any f ∈ G there exist
k > 0 that depends on f such that fk is a divisible element.

3. Proof of Theorem 1.1

The following lemma is well known and appeared in similar form in [4, Lemma 3.1].

Lemma 3.1. Assume that g is Zr-graded for r > 0 and consider a locally finite element
z ∈ g that does not belong to the zero component g0. Then there exists a locally nilpotent
homogeneous component of z of non-zero weight.

Proof. Let us take the convex hull P (z) ⊂ Zr ⊗ Q of component weights of z. Then
for any non-zero vertex v ∈ P (z) the corresponding homogeneous component is locally
nilpotent. The details are left to the reader. □

Proof of Theorem 1.1. Since U is a root subgroup with respect to T , T acts on U by
conjugations which implies that T acts on O(X)U . By assumption, there is a T -semi-
invariant f ∈ O(X)U of non-zero weight. Hence, {fk · U ⊂ Aut(X) | k ∈ N} are root
subgroups with respect to T with different weights. Without loss of generality we can
assume that U is a root subgroup with respect to T of non-zero weight since otherwise
we can just replace U by f · U .

Claim 1. The subgroup

G = T ⋉ (
⊕
k≥1

fk · U) ⊂ Aut(X)

is not linear.

Indeed, assume towards a contradiction that the subgroup G ⊂ Aut(X) is linear, i.e.,
there is an embedding φ:G → GLn(K). Since G is solvable, its image φ(G) ⊂ GLn(K)

is also solvable which implies that the closure φ(G) ⊂ GLn(K) is solvable too. Note that

φ(G) is an algebraic subgroup of GLn(K). Hence, the connected component φ(G)
◦
is

conjugate to the Borel subgroup B ⊂ GLn(K) of upper triangular matrices. Therefore,

without loss of generality we can assume that φ(G)
◦
⊂ B. We claim that φ(G) ⊂

φ(G)
◦
⊂ B. Indeed, each element g ∈ G belongs to an algebraic subgroup of G and

hence is divisible. Consequently, φ(g) ∈ φ(G) is divisible too. If φ(g) ̸∈ B, φ(g) belongs
to a finite extension of φ(B), i.e., can be written as a product hb, where b ∈ B and h
is a non-trivial element of finite order. The product hb can be divisible in φ(G) if and
only if h is the identity element. We conclude that φ(G) ⊂ B which porves the claim.
Therefore, the commutator [G,G] =

⊕
k≥1 f

k · U embedds into [B,B]. In other words

φ(
⊕

k≥1 f
k · U) is a subgroup of the unipotent radical of B.

Consider the closed subgroup φ(T )
◦
⋉ φ(fk · U) ⊂ B ⊂ GLn(K). The subgroup

φ(fk · U) = φ(fk · U)
◦
⊂ [B,B] is unipotent and φ(T ) ⊂ B is an algebraic subgroup.

Hence, φ(T )
◦
⊂ φ(T ) is a finite index subgroup which implies that φ(T )

◦
contains in-

finitely many elements of finite order of φ(T ). As a consequence, φ(T )
◦
contains a copy

of algebraic subtorus of positive dimension. Pick a big enough k ∈ N such that the ker-
nel of T -action on fk · U is ⟨ξk⟩, where ξk is an element of order bigger than the index

s = [φ(T ) : φ(T )
◦
] and ξk acts on Kf non-trivially. Hence, ξsk ∈ φ(T )

◦
and since k is
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chosen to be big enough, we have that

(1) ξsk acts on Kf non-trivially.

Since φ(ξsk) centralizes φ(fk · U), φ(ξsk) centralizes φ(fk · U) too. Choose a subtorus of

φ(T )
◦
which we denote by T̃ that contains φ(ξsk). Pick uk ∈ φ(fk · U) and consider the

unipotent subgroup Vk = ⟨T̃ .uk⟩ = ⟨tukt−1 | t ∈ T̃ ⟩ ⊂ GLn(K). Note that T̃ normalizes
Vk. Hence, the unipotet group Vk is a direct product of root subgroups with respect to
T̃ . The kernel of T̃ -action on Vk contains ⟨φ(ξsk)⟩. Since GLn(K) is an algebraic group,
i.e., is finitely dimensional, for a big enough k, the weights of all root subgroups of Vk
with respect to T̃ are the same as the weights of the root subgroups of Vk+1 = ⟨T̃ .uk+1⟩,
where uk+1 ∈ φ(fk+1 · U) ⊂ [B,B] ⊂ GLn(K). Hence, ⟨φ(ξsk)⟩ acts trivially on Vk+1.
As a consequence, ⟨ξsk⟩ acts trivially on φ−1(Vk) ⊂ fk · U and on φ−1(Vk+1) ⊂ fk+1 · U .
Therefore, ⟨ξsk⟩ acts trivially on φ−1(Vk) ⊂ fk · U and on φ−1(Vk+1) ⊂ fk+1 · U which
implies that ⟨ξsk⟩ acts trivially on Kf . This contradicts (1) which proves the theorem if
X admits Gm- and Ga-actions.

If X admits two non-commuting Gm-actions, then by Lemma 3.1 X admits a Ga-action
and the claim of the theorem follows from above. □

Remark 3.2. Let C be a smooth affine curve having trivial automorphism group and
no non-constant invertible regular functions. Then

Aut(A1 × C) = T ⋉O(C) · U,

where T = {(x, y) 7→ (ax, y) | a ∈ K∗} and U = {(x, y) 7→ (x + b, y) | b ∈ K}. Indeed,
let φ:A1 × C → A1 × C be an automorphism of A1 × C. By [10, Lemma 6.13] the
second projection pr2:A1 ×C → C is invariant under automorphisms of A1 ×C. Hence,
φ(x, y) = (ψ(x, y), y) for all x ∈ A1, y ∈ C and some morphism ψ:A1 × C → A1. For
every y ∈ C, ψ(·, y):A1 → A1 is an isomorphism. Hence, ψ(x, y) = a(y)x + b(y), where
a, b ∈ O(C). Since φ is an isomorphism, a is an invertible regular function, i.e., a ∈ K∗.

Remark 3.3. As it is already mentioned in the introduction, it is proved in [3] that
Aut(A2) is not linear, i.e., it cannot be embedded into GLn(K) for any n ∈ N. This also
follows from Theorem 1.1. Moreover, in [3, Proposition 2.3] it is proved that there is a
countably generated subgroup of the subgroup

J = {(ax+ c, by + f(x))|a, b ∈ C∗, c ∈ C, f(y) ∈ C[x]} ⊂ Aut(A2)

that is not linear. We note that by the Jung-Van der Kulk Theorem (see [8] and [9])
Aut(A2) is the amalgamated product of J and the group of affine transformations Aff2 of
A2 along their intersection C, i.e.,

(2) Aut(A2) = Aff2 ∗C J .

Using such an amalgamated product we claim that any representation of a subgroup

SAut(A2) =

{
(f, g) ∈ Aut(A2) | jac(f) = det

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
= 1

}
is trivial, i.e., any homomorphism φ: SAut(A2) → GLn(K) is trivial. To show this we
first note that the amalgamated product structure of Aut(A2) induces the amalgamated
product structure of SAut(A2). More precisely, SAut(A2) is the amalgamated product of
the group SAff2 of special affine transformations of A2 and the subgroup

Js = {(ax+ c, by + f(x))|a, b ∈ C∗, ab = 1, c ∈ C, f(y) ∈ C[x]} ⊂ Aut(A2).
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By [3, Proposition 2.3] there is no embedding of Js into GLn(K). Hence, there is a non-
identity element g ∈ Js such that g is the kernel of φ. Therefore, the normal subgroup
that contains g is also in the kernel of φ. But by [6] any normal subgroup that contains
g coincides with SAut(A2) which proves the claim.
Moreover, any group homomorphism ψ: Aut(A2) → GLn(K) factors through the ho-

momorphism jac: Aut(A2) → Gm. Indeed, similarly as above, there is g ∈ Js that is in
the kernel of ψ. Hence, by the same argument as above the normal subgroup generated
by g contains SAut(A2) and the claim follows.

4. Automorphism group that is isomorphic to a linear algebraic group

We begin this section with the lemma that is used in the proof of Theorem 1.2.

Lemma 4.1. Let Ũ , Ṽ ⊂ Aut(A2) be two one-dimensional unipotent subgroups that act
on A2 with different generic orbits. Then

(1) the subgroup GŨ ⊂ Aut(A2) generated by all one-dimensional unipotent subgroups

that have the same generic orbits as Ũ coincides with its centralizer;
(2) the subgroup generated by GŨ and GṼ cannot be presented as a finite product of GŨ

and GṼ .

Proof. Recall that the group Aut(A2) has the amalgamated product structure Aff2 ∗C J,
see (2). By [16] any closed algebraic subgroup of Aut(A2) is conjugate to one of the factors
Aff2 or J. Since GŨ ⊂ Aut(A2) is infinite-dimensional, GŨ is conjugate to a subgroup
of J. Moreover, since GŨ is infinite-dimensional, commutative and consists of unipotent
elements, GŨ is conjugate to a subgroup of

Ju = {(x, y + f(x)) | f(y) ∈ C[x]} ⊂ Aut(A2).

Since GŨ is generated by all one-dimensional unipotent subgroups that have the same
generic orbits, GŨ is conjugate to the whole Ju. It is easy to check that Ju ⊂ Aut(A2)
coincides with its centralizer which proves (1).

Without loss of generality we can assume that GŨ = Ju. Since by (1) GṼ does not
commute with GŨ = Ju, GṼ is not a subgroup of Ju and since GṼ is infinite-diemnsional,
GṼ is not a subgroup of J. Hence, (2) follows from amalgamated product structure of
Aut(A2). □

Denote by Q(R) the quotient field of a ring R. The next lemma is proved in [15,
Lemma 1.1].

Lemma 4.2. Let U ⊂ Aut(X) be a one-parameter unipotent subgroup.Then

CentAut(X)(O(X)U · U) ⊂ {f · u ∈ Aut(X) | f ∈ Q(O(X)U), u ∈ U}.

Proof of Theorem 1.2. Assume φ:G → Aut(X) is an isomorphism of abstract groups,
where G is a linear algebraic group. If the connected component G◦ ⊂ G is commutative,
the finite index subgroup of Aut(X) is commutative. This implies that the connected
component Aut◦(X) is commutative. Hence, by [2, Theorem B] (see also [14, Corollary
3.2]) Aut(X)◦ is a union of commutative algebraic groups. The group Aut(X)◦ either does
not contain unipotent subgroups and in this case Aut◦(X) is isomorphic to an algebraic
torus or Aut(X)◦ contains unipotent subgroups. In the later case either Aut(X) does
not contain a copy of Gm which implies that Aut◦(X) is the union of unipotent algebraic
subgroups or Aut(X) contains a subgroup T × U , where T ≃ Gm and U ≃ Ga. We
claim that in the second case Aut◦(X) is linear. Indeed, U is a root subgroup with
respect to T . Moreover, O(X)T ̸= O(X)U . To prove this we first note that there is
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an open subset S ⊂ X such that for any x ∈ S, U.x ⊂ X is a one-dimensional orbit
isomorphic to A1. Hence, if T × U.x ⊂ X is one-dimensional, T × U.x ≃ A1 which
is not possible as any coppies of Gm and Ga in the automorphism group of A1 do not
commute. Therefore, T × U.x ⊂ X is two-dimensional. This implies that O(X)U is a
proper subalgebra of O(X)T×U = (O(X)U)T as they have different Krull dimension by [5,
Theorem 11.1.1.(7)]. We conclude that O(X)U = O(X)T and by Theorem 1.1 Aut(X) is
not linear which proves the theorem in case G◦ is commutative.

Assume now towards a contradiction that G◦ is non-commutative.

Claim 2. G contains closed connected commutative subgroups U and V that do not
commute and U normalizes V .

Indeed, if G is non-unipotent, it contains a maximal subtorus T ⊂ G and a root
subgroup normalized but not centralized by T . If G is unipotent, then G is nilpotent,
i.e.,

(3) G = G0 ▷G1 ▷ · · ·▷Gn = {id},

where Gi+1 = [G,Gi], [G,Gi] = {ghg−1h−1 | g ∈ G, h ∈ Gi}. In particular, Gn−1 is a
subgroup of the center of G. Moreover, for any H ⊂ Gn−2 \Gn−1 isomorphic to Ga, the
group V = H × Gn−1 is commutative. Choose a subgroup U ⊂ G \ V isomorphic to
Ga that does not commute with V . Note that such U exists as G is non-commutative.
Moreover, we claim that U normalizes V . Indded, [U, V ] ⊂ [G,Gn−2] = Gn−1 which
means that uvu−1v−1 ∈ Gn−1 for any u ∈ U , v ∈ V . Hence, uvu−1 ∈ Gn−1v ⊂ V which
proves the claim.

Hence, φ(U)
◦
, φ(V )

◦
⊂ Aut(X) are closed connected commutative subgroups. Since

φ(U) normalizes φ(V ), φ(U) normalizes φ(V ) ⊂ Aut(X) and hence φ(U)
◦
normalizes

φ(V )
◦
. By [2, Theorem B] (see also [14, Corollary 3.2]) φ(U)

◦
, φ(V )

◦
⊂ Aut(X) are

unions of algebraic subgroups and hence φ(U)
◦
⋉φ(V )

◦
is a union of algebraic subgroups.

Note that φ(U)
◦
and φ(V )

◦
do not commute since otherwise the subgroups φ−1(φ(U)

◦
)

and φ−1(φ(V )
◦
) of G would commute which is not the case as φ−1(φ(U)

◦
) ∩ U ⊂ U is

a dense subgroup and analogously φ−1(φ(U)
◦
) ∩ U ⊂ U is a dense subgroup. Therefore,

there are non-commuting algebraic subgroups in Aut(X).
We have two possibilities, Aut(X) does not contain a copy of Gm or Aut(X) contains a

copy of Gm. Assume first that Aut(X) does not contain a copy of Gm, then the semidirect

product φ(U)
◦
⋉φ(V )

◦
is the union of unipotent subgroups and in particular it contains a

unipotent subgroup W that acts on X with a two-dimensional orbit O that is isomorphic
to A2, see [5, Theorem 11.1.1]. Pick subgroups Ũ ⊂ W and Ṽ ⊂ W isomorphic to Ga

that generate the algebraic subgroup that acts with a two-dimensional orbit O ≃ A2.

Take the maximal commutative subgroups H1 and H2 of Aut(X) that contain O(X)Ũ · Ũ
and O(X)Ṽ · Ṽ ⊂ Aut(X) respectively. Therefore, φ−1(H1), φ

−1(H2) ⊂ G are closed
subgroups. Hence, the subgroup H ⊂ G generated by φ−1(H1) and φ−1(H2) can be
presented as a finite product of subgroups φ−1(H1) and φ−1(H2). On the other hand,
the subgroup of Aut(X) generated by H1 and H2 cannot be presented as a finite product
of subgroups H1 and H2. Indeed, by Lemma 4.1(1) the restriction of H1 to O ≃ A2 is
the subgroup of Aut(O ≃ A2) generated by all one-dimensional unipotent subgroups that
have the same generic orbits as Ũ |O. Analogous situation we have with H2. Now by
Lemma 4.1(2), the subgroup H = ⟨H1, H2⟩ ⊂ Aut(X) restricted to O ≃ A2 cannot be
presented as a finite product of H1 and H2 restricted to O. We arrive to the contradiction
and finish the proof.
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We are left with the case when Aut(X) contains a subgroup T ≃ Gm. Since Autalg(X)
is not commutative, by [13, Theorem 1.3] there exists a copy of Ga in Aut(X). Now, by
Lemma 3.1 there is root subgroup U ⊂ Aut(X) with respect to T . By Theorem 1.1 we can
assume that O(X)T = O(X)U . Moreover, the maximal commutative subgroup that con-
tains T does not contain any algebraic subgroup different from T . Now, φ−1(T ) ⊂ G acts
on φ−1(CentAut(X)(O(X)U ·U)) ⊂ G by conjugations. By Lemma 5 CentAut(X)(O(X)U ·U)
coincides with its centalizer. Hence, φ−1(CentAut(X)(O(X)U · U)) ⊂ G also coin-
cides with its centralizer and does not contain elements of finite order. Therefore,
φ−1(CentAut(X)(O(X)U ·U)) ⊂ G is a closed unipotent subgroup. Moreover, φ−1(T ) ⊂ G
is the closed commutative algebraic subgroup that contains infinitely many elements of

finite order which implies that φ−1(T )
◦
= D × V , where D ⊂ G is a torus of positive

diemnsion and V ⊂ G is a unipotent commutative subgroup.

Claim 3. The group φ(D × V ) is a subgroup of φ(T ).

Indeed, D×V ⊂ φ−1(T ) is a finite index subgroup. Hence, φ(D×V )∩T ⊂ T is a finite
index subgroup. Moreover, each element of D × V is divisible as D × V is the algebraic
group. This implies that each element of φ(D×V ) is divisible in φ(D×V ). Consequently,
each element of the intersection T ∩φ(D×V ) is divisible and so T ∩φ(D×V ) is a finite
index subgroup of T that consists of divisible elements of T . Therefore, T∩φ(D×V ) = T .

Claim 4. The unipotent subgroup V ⊂ φ−1(CentAut(X)(O(X)U · U)) ⊂ G is trivial.

Indeed, by Lie-Kolchin Theorem [7, §17.6] the unipotent group V acts on a unipotent
subgroup φ−1(CentAut(X)(O(X)U · U)) ⊂ G with a fixed point which is not possible as
φ(V ) ⊂ T , and T acts with a finite kernel on any element of

{f · u ∈ Aut(X) | f ∈ Q(O(X)U), u ∈ U}.
This proves the claim.

The algebraic subtorus D ⊂ G acts on a unipotent subgroup φ−1(CentAut(X)(O(X)U ·
U)) and hence φ−1(CentAut(X)(O(X)U ·U)) decomposes into a direct sum of finitely many
one-dimensional D-invariant unipotent subgroups V1, . . . , Vk, k ≥ 1. The subgroups

φ(Vi) ⊂ {f · u ∈ Aut(X) | f ∈ Q(O(X)U), u ∈ U}
are invariant under φ(D)-action and in particular because T ⊂ φ(D), φ(Vi) are invariant
under the action of T . Hence, φ(Vi) = Ri · U , where Ri ⊂ Q(O(X)U) is a vector
subspace for each i = 1, . . . , k. Therefore, at least one Ri is infinite-dimensional vector
subspace of Q(O(X)U), say R1. Since D acts on V1 \ {0} transitively, φ(D) acts on
φ(V1) \ {0} transitively too. But since R1 is a infinite-dimensional vector space, there is
no commutative subgroup of GL(R1) that acts transitively on R1 \ {0}. We arrive to a
contradiction which finishes the proof. □

5. Proof of Theorem 1.3

We start this section with the next proposition.

Proposition 5.1. Assume K is uncountable and X is a connected affine variety. Then
Aut(X) is not isomorphic to the Cremona group Bir(An) = Bir(Pn) as an abstract group
for any n > 0.

Proof. The proof of this statement is similar to the proof of Theorem A in [2]. We give
some details here for the convenience of the reader. Let

Tr = {(x1, . . . , xn) 7→ (x1 + c1, . . . , xn + cn) | ci ∈ K} ⊂ Aut(An) ⊂ Bir(An)
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be the subgroup of all translations and Tri be the subgroup of translations of the i-th
coordinate:

(4) (x1, . . . , xn) 7→ (x1, . . . , xi + c, . . . , xn),

where c in K. Let T ⊂ GLn(K) ⊂ Aut(An) ⊂ Bir(Pn) be the diagonal group (viewed as
a maximal torus) and let Ti be the subgroup of automorphisms

(5) (x1, . . . , xn) 7→ (x1, . . . , axi, . . . , xn),

where a ∈ K∗. A direct computation shows that Tr (resp. T ) coincides with its centralizer
in Bir(An) = Bir(Pn). Assume towards a contradiction that there is an isomorphism
φ: Bir(An) → Aut(X) of abstract groups. Similarly as in [2, Lemma 5.2] the groups φ(Tr),
φ(Tri), φ(T ) and φ(Ti) are closed subgroups of Aut(X) for all i = 1, . . . , n. Now the proof
of [2, Theorem A] implies that X ≃ An and φ(T ) ⊂ Aut(X ≃ An) is isomorphic to the n-
dimensional algebraic torus. Assume U ⊂ PGLn+1(K) ⊂ Bir(An) is a root subgroup with
respect to T . This means that T acts on U with two orbits. Therefore, φ(U) ⊂ Aut(X) is
a constructible subset which is a group. We conclude that φ(U) ⊂ Aut(X) is an algebraic
subgroup. Moreover, since PGLn+1(K) is generated by its finitely many root subgroups U
with respect to T , φ(PGLn+1(K)) is generated by finitely many algebraic subgroups φ(U)
which implies that φ(PGLn+1(K)) ⊂ Aut(X ≃ An) is an algebraic subgroup. Further,
φ(T ) ⊂ φ(PGLn+1(K)) is a maximal subtorus that is isomorphic to Gn

m which means that
φ(PGLn+1(K)) is a simple algebraic group of rank n that is isomorphic to PGLn+1(K) as
an abstract group. We conclude that φ(PGLn+1(K)) is isomorphic to PGLn+1(K) as an
algebraic group. But this is not possible since the algebraic group PGLn+1(K) does not
act regularly on An as the only closed subgroup H of codimension ≤ n of PGLn+1(K) is a
maximal parabolic subgroup such that PGLn+1(K)/H ≃ Pn. We arrive to a contradiction
with the isomorphism X ≃ An. The proof follows. □

Proof of Theorem 1.3. Let H ⊂ Bir(X) be a maximal algebraic subtorus. By [12, The-
orem 1] X is birationally equivalent to Al × Z, where H acts on Al with an open
orbit and Z ⊂ Ar is an affine variety with a trivial action of H. By Proposition
5.1 we can assume that Z is positive dimensional. Assume there is an isomorphism
φ: Bir(X) = Bir(Al × Z) → Aut(Y ). Consider the maximal commutative subgroup G of
Bir(Al × Z) of the form

{(x1, . . . , xl, z1, . . . , zr) 7→ (f1(z)x1, . . . , fl(z)xl, g1(z), . . . , gr(z)) | fi(z), gi(z) ∈ K(Z)}
that contains the commutative subgroup

{(x1, . . . , xl, z1, . . . , zr) 7→ (f1(z)x1, . . . , fl(z)xl, z1, . . . , zr) | fi(z) ∈ K(Z)},
where the map

Z → Z (z1, . . . , zr) 7→ (g1(z), . . . , gr(z))

is a birational transformation of Z.

Claim 5. The subgroup G ⊂ Bir(Al × Z) coincides with its centralizer.

To prove this claim consider a birational transformation ϕ of Al × Z of the form

(x1, . . . , xl, z1, . . . , zr) 7→ (F1(x, z), . . . , Fl(x, z), G1(x, z), . . . , Gr(x, z)),

where Fi(x, z), Gi(x, z) ∈ K(Al × Z), x = (x1, . . . , xl), z = (z1, . . . , zr) that commutes
with each element from G. Hence, ϕ commutes with T ⊂ G, i.e., with all birational
transformations of Al × Z of the form

(x1, . . . , xl, z1, . . . , zr) 7→ (t1x1, . . . , tlxl, z1, . . . , zr), t1, . . . , tr ∈ K∗.
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Direct computations show that

tiFi(t
−1
1 x1, . . . , t

−1
l xl, z1, . . . , zr) = Fi(x1, . . . , xl, z1, . . . , zr)

and

Gj(t
−1
1 x1, . . . , t

−1
l xl, z1, . . . , zr) = Gj(x1, . . . , xl, z1, . . . , zr)

for all t1, . . . , tr ∈ K∗, i = 1 . . . , l, j = 1, . . . , r. Therefore, Fi(x, z) = hi(z)xi for some
hi(z) ∈ K(Z) and Gj ∈ K(Z). This proves the claim.

By [10, Lemma 2.4] φ(G) ⊂ Aut(Y ) is a closed ind-subgroup and by [2, Theorem B]
(see also [14, Corollary 3.2]) the connected component φ(G)◦ ⊂ Aut(Y ) is the union of
commutative algebraic subgroups. Since φ(G)◦ ⊂ φ(G) is a countable index subgroup,
there is an element g = (f1(z)x1, x2, . . . , xl, z1, . . . , zr) ∈ G with non-constant f1 such
that φ(g) belongs to φ(G)◦. Since φ(G)◦ is the union of connected algebraic groups,
φ(g) belongs to a connected algebraic subgroup of φ(G)◦ and hence there exists k > 0
such that φ(g)k is a divisible element (see Section 2.4). The element gk again has a

form (f̃1(z)x1, x2, . . . , xl, z1, . . . , zr) with a non-constant f̃1 = r1
r2
, where r1, r2 ∈ O(Z).

Moreover, gk ∈ G is not divisible. More precisely, without loss of generality we can assume
that r1 is non-constant and hence, there is no h ∈ G such that hdeg r1+1 = gk. Indeed,
otherwise there would exist a rational function s ∈ K(Z) such that sdeg r1+1 = f̃1 = r1

r2
which is not the case. We get the contradiction which proves the theorem. □

References

[1] J. Blanc, and A. Dubouloz, Affine surfaces with a huge group of automorphisms, Int. Math. Res.
Not., 2015, Iss. 2, pp 422–459.
[2] S. Cantat, A. Regeta, and J. Xie, Families of commuting automorphisms, and a characterization of
the affine space, arXiv:1912.01567 to appear in Amer. J. Math.
[3] Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group, arXiv:1701.00275.
[4] H. Flenner, M. Zaidenberg, On the uniqueness of C∗-actions on affine surfaces, Affine Algebraic
Geometry, 97–111, Contemporary Mathematics 369, Amer. Math. Soc. Providence, R.I., 2005.
[5] J.-P. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties,
arXiv:1809.04175.
[6] J.-P. Furter, S. Lamy, Normal subgroup generated by a plane polynomial automorphism, Transf.
Groups 15, no 3 (2010), 577–610.
[7] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, Graduate
Texts in Mathematics, No. 21.
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