WHEN IS THE AUTOMORPHISM GROUP OF AN AFFINE VARIETY LINEAR?

ANDRIY REGETA

ABSTRACT. Let $\operatorname{Aut}_{\operatorname{alg}}(X)$ be the subgroup of the group of regular automorphisms $\operatorname{Aut}(X)$ of an affine algebraic variety X generated by all connected algebraic subgroups. We prove that if $\dim X \geq 2$ and if $\operatorname{Aut}_{\operatorname{alg}}(X)$ is "rich enough", $\operatorname{Aut}_{\operatorname{alg}}(X)$ is not linear, i.e., it cannot be embedded into $\operatorname{GL}_n(\mathbb{F})$, where \mathbb{K} is an algebraically closed field of characteristic zero and \mathbb{F} is a field. Moreover, $\operatorname{Aut}(X)$ is isomorphic to an algebraic group as an abstract group only if the connected component of $\operatorname{Aut}(X)$ is either the algebraic torus or a direct limit of commutative unipotent groups. Finally, we prove that for an uncountable \mathbb{K} the group of birational transformations of X cannot be isomorphic to the group of automorphisms of an affine variety if X is endowed with a rational action of a positive-dimensional linear algebraic group.

1. Introduction

In this paper we work over algebraically closed field \mathbb{K} of characteristic zero, and X always denotes an irreducible affine variety. It is well-known that the automorphism group of an affine variety may be very large. For example, the automorphism group $\operatorname{Aut}(\mathbb{A}^2)$ of the affine plane \mathbb{A}^2 contains a free product of two polynomial rings in one variable. Consequently, $\operatorname{Aut}(\mathbb{A}^2)$ is infinite-dimensional and cannot be given a structure of an algebraic group. Moreover, it is shown in [3, Proposition 2.3] that $\operatorname{Aut}(\mathbb{A}^2)$ is not linear, i.e. $\operatorname{Aut}(\mathbb{A}^2)$ cannot be embedded into the general linear group $\operatorname{GL}_n(\mathbb{K})$ as an abstract group. The first main result of the present note is a generalization of this statement to a big family of affine varieties.

It is well-known (Proposition 2.3) that the automorphism group $\operatorname{Aut}(X)$ has a structure of an $\operatorname{ind-group}$ (see Section 2.2 for the definition) and if $\dim X \geq 2$, $\operatorname{Aut}(X)$ is infinite-dimensional unless $\operatorname{Aut}(X)$ is a countable extension of the algebraic torus. But even if the automorphism group $\operatorname{Aut}(X)$ is infinite-dimensional it may happen that $\operatorname{Aut}(X)$ embeds into $\operatorname{GL}_n(\mathbb{K})$. For exmaple, [10, Example 6.14] shows that there is an affine surface S such that $\operatorname{Aut}(S)$ is isomorphic to the polynomial ring in one variable $\operatorname{K}[t]$ and as an abstract additive group $\operatorname{Aut}(S)$ is isomorphic to the additive group of the base field and hence embeds into $\operatorname{GL}_2(\mathbb{K})$. However, if $\operatorname{Aut}(X)$ is rich enough, $\operatorname{Aut}(X)$ cannot be embedded into $\operatorname{GL}_n(\mathbb{K})$. More precisely, we prove the following statement.

We denote the additive and multiplicative group of the field \mathbb{K} by \mathbb{G}_a and \mathbb{G}_m respectively. For a given affine variety X we denote by $\operatorname{Aut}_{\operatorname{alg}}(X)$ the subgroup of $\operatorname{Aut}(X)$ generated by all connected algebraic subgroups.

Theorem 1.1. Assume X is at least two-dimensional variety such that $\operatorname{Aut}(X)$ contains an algebraic subtorus $T \simeq \mathbb{G}_m^k$, $k \geq 1$, a root subgroup $U \subset \operatorname{Aut}(X)$ and the invariant subrings $\mathcal{O}(X)^T$, $\mathcal{O}(X)^U \subset \mathcal{O}(X)$ do not coincide. Then $\operatorname{Aut}_{\operatorname{alg}}(X)$ cannot be embedded into $\operatorname{GL}_n(\mathbb{F})$ for any field \mathbb{F} .

The assumption in Theorem 1.1 is necessary. Indeed, consider X isomorphic to $\mathbb{A}^1 \times C$, where C is a smooth affine curve having trivial automorphism group and no non-constant

invertible regular functions. By Remark 3.2 Aut(X) is isomorphic to $\mathbb{G}_m \ltimes \mathcal{O}(C)^+$ which can be embedded into $\mathbb{K}(C)^* \ltimes \mathbb{K}(C)^+$, where $\mathbb{K}(C)$ is the function field of C.

If X admits no \mathbb{G}_m -action, but admits two non-commuting \mathbb{G}_a -actions, $\operatorname{Aut}(X)$ can be embedded into $\operatorname{GL}_n(\mathbb{K})$. For example, there exists an affine surface X (see [1, Example 4.1.3]) that has an automorphism group $\operatorname{Aut}(X) = \operatorname{Aut}_{\operatorname{alg}}(X) \simeq \mathbb{K}[x] * \mathbb{K}[y]$ which is linear by [11, Theorem] as additive groups $\mathbb{K}[x] \simeq \mathbb{K}[y]$ are isomorphic as abstract groups to \mathbb{G}_a .

The second question we study is whether the automorphism group of an affine variety can be isomorphic to a linear algebraic group. More precisely, we have the following statement which is the main result of the paper.

Theorem 1.2. Let X be an affine variety. If $\operatorname{Aut}(X)$ is isomorphic to a linear algebraic group as an abstract group, then the connected component $\operatorname{Aut}^{\circ}(X)$ is commutative. Moreover, in this case $\operatorname{Aut}^{\circ}(X)$ is either the algebraic torus or a direct limit of commutative unipotent groups.

We denote by $\operatorname{Bir}(X)$ the group of birational transformations of X. It is well-known that such a group may be very large. For example the Cremona group $\operatorname{Bir}(\mathbb{A}^n) = \operatorname{Bir}(\mathbb{P}^n)$ for n > 1 is known to be very big, in particular, much larger than $\operatorname{Aut}(\mathbb{A}^n)$. Proposition 5.1 shows that the Cremona group $\operatorname{Bir}(\mathbb{A}^n) = \operatorname{Bir}(\mathbb{P}^n)$, n > 0, is not isomorphic to the automorphism group of any affine variety. Moreover, if $\operatorname{Bir}(X)$ is "rich enough", $\operatorname{Bir}(X)$ is also not isomorphic to the automorphism group of any affine variety. More precisely, we prove the following statement.

Theorem 1.3. Assume \mathbb{K} is uncountable and X,Y are affine irreducible algebraic varieties. Assume X is endowed with a rational action of a positive-dimensional linear algebraic group. Then the group of birational transformations Bir(X) is not isomorphic to Aut(Y).

Acknowledgements: I would like to thank Ivan Arzhantsev and Ievgen Makedonskyi for useful comments.

2. Preliminaries

2.1. **Derivations and group actions.** Recall that X is an irreducible affine algebraic variety. A derivation δ is called *locally finite* if it acts locally finitely on $\mathcal{O}(X)$, i.e., for any function $f \in \mathcal{O}(X)$ there is a finite-dimensional vector subspace $W \subset \mathcal{O}(X)$ such that $f \in W$ and W is stable under action of δ . A derivation $\delta \in \text{Der}(\mathcal{O}(X))$ is called *locally nilpotent* if for any function $f \in \mathcal{O}(X)$ there exists $k \in \mathbb{N}$ (which depends on f) such that $\delta^k(f) = 0$. Note that there is a one-to-one correspondence between locally nilpotent derivations on $\mathcal{O}(X)$ and \mathbb{G}_a -actions on X given by the map $\delta \mapsto \{t \mapsto \exp(t\delta)\}$.

An element $u \in \operatorname{Aut}(X)$ is called *unipotent* if $u = \exp(\partial)$ for some locally nilpotent derivation ∂ .

2.2. **Ind-groups.** The notion of an ind-group goes back to Shafarevich who called it an infinite dimensional algebraic group (see [17]). We refer to [5] for basic notions in this context.

Definition 2.1. By an affine *ind-variety* we understand an injective limit $V = \varinjlim V_i$ of an ascending sequence $V_0 \hookrightarrow V_1 \hookrightarrow V_2 \hookrightarrow \ldots$ such that the following holds:

- $(1) V = \bigcup_{k \in \mathbb{N}} V_k;$
- (2) each V_k is an affine algebraic variety;
- (3) for all $k \in \mathbb{N}$ the embedding $V_k \hookrightarrow V_{k+1}$ is closed in the Zariski topology.

For simplicity we will call an affine ind-variety simply an ind-variety.

An ind-variety V has a natural topology: a subset $S \subset V$ is called closed, resp. open, if $S_k := S \cap V_k \subset V_k$ is closed, resp. open, for all $k \in \mathbb{N}$. A closed subset $S \subset V$ has a natural structure of an ind-variety and is called an ind-subvariety.

A set theoretical product of ind-varieties admits a natural structure of an ind-variety. A morphism between ind-varieties $V = \bigcup_m V_m$ and $W = \bigcup_l W_l$ is a map $\phi: V \to W$ such that for every $m \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that $\phi(V_m) \subset W_l$ and that the induced map $V_m \to W_l$ is a morphism of algebraic varieties. This allows us to give the following definition.

Definition 2.2. An ind-variety H is said to be an *ind-group* if the underlying set H is a group such that the map $H \times H \to H$, defined by $(q,h) \mapsto qh^{-1}$, is a morphism of ind-varieties.

A closed subgroup G of H is a subgroup that is at the same time a closed subset. In this case G is again an ind-group with respect to the induced ind-variety structure. A closed subgroup G of an ind-group $H = \underline{\lim} H_i$ is called an algebraic subgroup if G is contained in H_i for some i.

The next result can be found in [5, Section 5].

Proposition 2.3. Let X be an affine variety. Then Aut(X) has the structure of an ind-group such that a regular action of an algebraic group H on X induces an ind-group homomorphism $H \to \operatorname{Aut}(X)$.

2.3. Root subgroups. In this section we describe root subgroups of Aut(X) for a given affine variety X with respect to a subtorus.

Definition 2.4. Let T be a subtorus in Aut(X), i.e. a closed algebraic subgroup isomorphic to a torus. A closed algebraic subgroup $U \subset \operatorname{Aut}(X)$ isomorphic to \mathbb{G}_a is called a root subgroup with respect to T if the normalizer of U in Aut(X) contains T.

Since \mathbb{G}_a contains no non-trivial closed normal subgroups, every non-trivial regular action is faithful. Hence, such an algebraic subgroup U corresponds a non-trivial normalized \mathbb{G}_a -action on X, i.e. a \mathbb{G}_a -action on X whose image in $\operatorname{Aut}(X)$ is normalized by T.

Assume $U \subset \operatorname{Aut}(X)$ is a root subgroup with respect to T. Since T normalizes U, we can define an action $\varphi: T \to \operatorname{Aut}(U)$ of T on U given by $t.u = t \circ u \circ t^{-1}$ for all $t \in T$ and $u \in U$. Moreover, since $\operatorname{Aut}(U) \simeq \mathbb{G}_m$, such an action corresponds to a character of the torus $\chi: T \to \mathbb{G}_m$, which does not depend on the choice of isomorphism between $\operatorname{Aut}(U)$ and \mathbb{G}_m . This character is called the weight of U. The algebraic subgroups T and U generate an algebraic subgroup in $\operatorname{Aut}(X)$ isomorphic to $\mathbb{G}_a \rtimes_{\chi} T$.

Consider a nontrivial algebraic action of \mathbb{G}_a on X, given by $\lambda: \mathbb{G}_a \to \operatorname{Aut}(X)$. If $f \in \mathcal{O}(X)$ is \mathbb{G}_a -invariant, then the modification $f \cdot \lambda$ of λ is defined in the following way:

$$(f \cdot \lambda)(r)x = \lambda(f(x)r)x$$

for $r \in \mathbb{C}$ and $x \in X$. This is again a \mathbb{G}_a -action. It is not difficult to see that if X is irreducible and $f \neq 0$, then $f \cdot \lambda$ and λ have the same invariants. If $U \subset \operatorname{Aut}(X)$ is a closed algebraic subgroup isomorphic to \mathbb{G}_a and if $f \in \mathcal{O}(X)^U$ is a U-invariant, then in a similar way we define the modification $f \cdot U$ of U. Pick an isomorphism $\lambda : \mathbb{G}_a \to U$ and set

$$f \cdot U = \{ (f \cdot \lambda)(r) \mid r \in \mathbb{G}_a \}.$$

2.4. **Divisible elements.** We call an element f in a group G divisible by n if there exists an element $g \in G$ such that $g^n = f$. An element is called divisible if it is divisible by all $n \in \mathbb{Z}^+$. If G is an agebraic group, then by [10, Lemma 3.12] for any $f \in G$ there exist k > 0 that depends on f such that f^k is a divisible element.

3. Proof of Theorem 1.1

The following lemma is well known and appeared in similar form in [4, Lemma 3.1].

Lemma 3.1. Assume that \mathfrak{g} is \mathbb{Z}^r -graded for r > 0 and consider a locally finite element $z \in \mathfrak{g}$ that does not belong to the zero component \mathfrak{g}_0 . Then there exists a locally nilpotent homogeneous component of z of non-zero weight.

Proof. Let us take the convex hull $P(z) \subset \mathbb{Z}^r \otimes \mathbb{Q}$ of component weights of z. Then for any non-zero vertex $v \in P(z)$ the corresponding homogeneous component is locally nilpotent. The details are left to the reader.

Proof of Theorem 1.1. Since U is a root subgroup with respect to T, T acts on U by conjugations which implies that T acts on $\mathbb{O}(X)^U$. By assumption, there is a T-semi-invariant $f \in \mathcal{O}(X)^U$ of non-zero weight. Hence, $\{f^k \cdot U \subset \operatorname{Aut}(X) \mid k \in \mathbb{N}\}$ are root subgroups with respect to T with different weights. Without loss of generality we can assume that U is a root subgroup with respect to T of non-zero weight since otherwise we can just replace U by $f \cdot U$.

Claim 1. The subgroup

$$G = T \ltimes (\bigoplus_{k \ge 1} f^k \cdot U) \subset \operatorname{Aut}(X)$$

is not linear.

Indeed, assume towards a contradiction that the subgroup $G \subset \operatorname{Aut}(X)$ is linear, i.e., there is an embedding $\varphi \colon G \to \operatorname{GL}_n(\mathbb{K})$. Since G is solvable, its image $\varphi(G) \subset \operatorname{GL}_n(\mathbb{K})$ is also solvable which implies that the closure $\overline{\varphi(G)} \subset \operatorname{GL}_n(\mathbb{K})$ is solvable too. Note that $\overline{\varphi(G)}$ is an algebraic subgroup of $\operatorname{GL}_n(\mathbb{K})$. Hence, the connected component $\overline{\varphi(G)}^\circ$ is conjugate to the Borel subgroup $B \subset \operatorname{GL}_n(\mathbb{K})$ of upper triangular matrices. Therefore, without loss of generality we can assume that $\overline{\varphi(G)}^\circ \subset B$. We claim that $\varphi(G) \subset \overline{\varphi(G)}^\circ \subset B$. Indeed, each element $g \in G$ belongs to an algebraic subgroup of G and hence is divisible. Consequently, $\varphi(g) \in \overline{\varphi(G)}$ is divisible too. If $\varphi(g) \not\in B$, $\varphi(g)$ belongs to a finite extension of $\varphi(B)$, i.e., can be written as a product hb, where $b \in B$ and h is a non-trivial element of finite order. The product hb can be divisible in $\varphi(G)$ if and only if h is the identity element. We conclude that $\varphi(G) \subset B$ which porves the claim. Therefore, the commutator $[G,G] = \bigoplus_{k\geq 1} f^k \cdot U$ embedds into [B,B]. In other words $\varphi(\bigoplus_{k\geq 1} f^k \cdot U)$ is a subgroup of the unipotent radical of B.

Consider the closed subgroup $\overline{\varphi(T)}^{\circ} \ltimes \overline{\varphi(f^k \cdot U)} \subset B \subset \operatorname{GL}_n(\mathbb{K})$. The subgroup $\overline{\varphi(f^k \cdot U)} = \overline{\varphi(f^k \cdot U)}^{\circ} \subset [B, B]$ is unipotent and $\overline{\varphi(T)} \subset B$ is an algebraic subgroup. Hence, $\overline{\varphi(T)}^{\circ} \subset \overline{\varphi(T)}$ is a finite index subgroup which implies that $\overline{\varphi(T)}^{\circ}$ contains infinitely many elements of finite order of $\varphi(T)$. As a consequence, $\overline{\varphi(T)}^{\circ}$ contains a copy of algebraic subtorus of positive dimension. Pick a big enough $k \in \mathbb{N}$ such that the kernel of T-action on $f^k \cdot U$ is $\langle \xi_k \rangle$, where ξ_k is an element of order bigger than the index $s = [\overline{\varphi(T)} : \overline{\varphi(T)}^{\circ}]$ and ξ_k acts on $\mathbb{K}f$ non-trivially. Hence, $\xi_k^s \in \overline{\varphi(T)}^{\circ}$ and since k is

chosen to be big enough, we have that

(1)
$$\xi_k^s$$
 acts on $\mathbb{K}f$ non-trivially.

Since $\varphi(\xi_k^s)$ centralizes $\varphi(f^k \cdot U)$, $\varphi(\xi_k^s)$ centralizes $\overline{\varphi(f^k \cdot U)}$ too. Choose a subtorus of $\overline{\varphi(T)}^\circ$ which we denote by \tilde{T} that contains $\varphi(\xi_k^s)$. Pick $u_k \in \varphi(f^k \cdot U)$ and consider the unipotent subgroup $V_k = \langle \tilde{T}.u_k \rangle = \langle tu_k t^{-1} \mid t \in \tilde{T} \rangle \subset \operatorname{GL}_n(\mathbb{K})$. Note that \tilde{T} normalizes V_k . Hence, the unipotet group V_k is a direct product of root subgroups with respect to \tilde{T} . The kernel of \tilde{T} -action on V_k contains $\langle \varphi(\xi_k^s) \rangle$. Since $\operatorname{GL}_n(\mathbb{K})$ is an algebraic group, i.e., is finitely dimensional, for a big enough k, the weights of all root subgroups of V_k with respect to \tilde{T} are the same as the weights of the root subgroups of $V_{k+1} = \langle \tilde{T}.u_{k+1} \rangle$, where $u_{k+1} \in \varphi(f^{k+1} \cdot U) \subset [B,B] \subset \operatorname{GL}_n(\mathbb{K})$. Hence, $\langle \varphi(\xi_k^s) \rangle$ acts trivially on V_{k+1} . As a consequence, $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$. Therefore, $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$ which implies that $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$ which implies that $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$ which implies that $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$ which implies that $\langle \xi_k^s \rangle$ acts trivially on $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and on $\tilde{\varphi}^{-1}(V_{k+1}) \subset f^{k+1} \cdot U$ which implies $\tilde{\varphi}^{-1}(V_k) \subset f^k \cdot U$ and $\tilde{\varphi}^{-1}(V_k) \subset f^$

If X admits two non-commuting \mathbb{G}_m -actions, then by Lemma 3.1 X admits a \mathbb{G}_a -action and the claim of the theorem follows from above.

Remark 3.2. Let C be a smooth affine curve having trivial automorphism group and no non-constant invertible regular functions. Then

$$\operatorname{Aut}(\mathbb{A}^1 \times C) = T \ltimes \mathcal{O}(C) \cdot U,$$

where $T = \{(x,y) \mapsto (ax,y) \mid a \in \mathbb{K}^*\}$ and $U = \{(x,y) \mapsto (x+b,y) \mid b \in \mathbb{K}\}$. Indeed, let $\varphi \colon \mathbb{A}^1 \times C \to \mathbb{A}^1 \times C$ be an automorphism of $\mathbb{A}^1 \times C$. By [10, Lemma 6.13] the second projection $\operatorname{pr}_2 \colon \mathbb{A}^1 \times C \to C$ is invariant under automorphisms of $\mathbb{A}^1 \times C$. Hence, $\varphi(x,y) = (\psi(x,y),y)$ for all $x \in \mathbb{A}^1, y \in C$ and some morphism $\psi \colon \mathbb{A}^1 \times C \to \mathbb{A}^1$. For every $y \in C$, $\psi(\cdot,y) \colon \mathbb{A}^1 \to \mathbb{A}^1$ is an isomorphism. Hence, $\psi(x,y) = a(y)x + b(y)$, where $a,b \in \mathcal{O}(C)$. Since φ is an isomorphism, a is an invertible regular function, i.e., $a \in \mathbb{K}^*$.

Remark 3.3. As it is already mentioned in the introduction, it is proved in [3] that $\operatorname{Aut}(\mathbb{A}^2)$ is not linear, i.e., it cannot be embedded into $\operatorname{GL}_n(\mathbb{K})$ for any $n \in \mathbb{N}$. This also follows from Theorem 1.1. Moreover, in [3, Proposition 2.3] it is proved that there is a countably generated subgroup of the subgroup

$$J = \{(ax + c, by + f(x)) | a, b \in \mathbb{C}^*, c \in \mathbb{C}, f(y) \in \mathbb{C}[x]\} \subset \operatorname{Aut}(\mathbb{A}^2)$$

that is not linear. We note that by the Jung-Van der Kulk Theorem (see [8] and [9]) $\operatorname{Aut}(\mathbb{A}^2)$ is the amalgamated product of J and the group of affine transformations Aff_2 of \mathbb{A}^2 along their intersection C, i.e.,

(2)
$$\operatorname{Aut}(\mathbb{A}^2) = \operatorname{Aff}_2 *_C J.$$

Using such an amalgamated product we claim that any representation of a subgroup

$$\operatorname{SAut}(\mathbb{A}^2) = \left\{ (f, g) \in \operatorname{Aut}(\mathbb{A}^2) \mid \operatorname{jac}(f) = \det \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} = 1 \right\}$$

is trivial, i.e., any homomorphism $\varphi: \operatorname{SAut}(\mathbb{A}^2) \to \operatorname{GL}_n(\mathbb{K})$ is trivial. To show this we first note that the amalgamated product structure of $\operatorname{Aut}(\mathbb{A}^2)$ induces the amalgamated product structure of $\operatorname{SAut}(\mathbb{A}^2)$. More precisely, $\operatorname{SAut}(\mathbb{A}^2)$ is the amalgamated product of the group SAff_2 of special affine transformations of \mathbb{A}^2 and the subgroup

$$\mathbf{J}^s = \{(ax+c, by+f(x)) | a, b \in \mathbb{C}^*, ab = 1, c \in \mathbb{C}, f(y) \in \mathbb{C}[x]\} \subset \mathrm{Aut}(\mathbb{A}^2).$$

By [3, Proposition 2.3] there is no embedding of J^s into $GL_n(\mathbb{K})$. Hence, there is a non-identity element $g \in J^s$ such that g is the kernel of φ . Therefore, the normal subgroup that contains g is also in the kernel of φ . But by [6] any normal subgroup that contains g coincides with $SAut(\mathbb{A}^2)$ which proves the claim.

Moreover, any group homomorphism $\psi: \operatorname{Aut}(\mathbb{A}^2) \to \operatorname{GL}_n(\mathbb{K})$ factors through the homomorphism jac: $\operatorname{Aut}(\mathbb{A}^2) \to \mathbb{G}_m$. Indeed, similarly as above, there is $g \in J^s$ that is in the kernel of ψ . Hence, by the same argument as above the normal subgroup generated by g contains $\operatorname{SAut}(\mathbb{A}^2)$ and the claim follows.

4. Automorphism group that is isomorphic to a linear algebraic group

We begin this section with the lemma that is used in the proof of Theorem 1.2.

Lemma 4.1. Let $\tilde{U}, \tilde{V} \subset \operatorname{Aut}(\mathbb{A}^2)$ be two one-dimensional unipotent subgroups that act on \mathbb{A}^2 with different generic orbits. Then

- (1) the subgroup $G_{\tilde{U}} \subset \operatorname{Aut}(\mathbb{A}^2)$ generated by all one-dimensional unipotent subgroups that have the same generic orbits as \tilde{U} coincides with its centralizer;
- (2) the subgroup generated by $G_{\tilde{U}}$ and $G_{\tilde{V}}$ cannot be presented as a finite product of $G_{\tilde{U}}$ and $G_{\tilde{V}}$.

Proof. Recall that the group $\operatorname{Aut}(\mathbb{A}^2)$ has the amalgamated product structure $\operatorname{Aff}_2 *_C \operatorname{J}$, see (2). By [16] any closed algebraic subgroup of $\operatorname{Aut}(\mathbb{A}^2)$ is conjugate to one of the factors Aff_2 or J. Since $G_{\tilde{U}} \subset \operatorname{Aut}(\mathbb{A}^2)$ is infinite-dimensional, $G_{\tilde{U}}$ is conjugate to a subgroup of J. Moreover, since $G_{\tilde{U}}$ is infinite-dimensional, commutative and consists of unipotent elements, $G_{\tilde{U}}$ is conjugate to a subgroup of

$$J_u = \{(x, y + f(x)) \mid f(y) \in \mathbb{C}[x]\} \subset \operatorname{Aut}(\mathbb{A}^2).$$

Since $G_{\tilde{U}}$ is generated by all one-dimensional unipotent subgroups that have the same generic orbits, $G_{\tilde{U}}$ is conjugate to the whole J_u . It is easy to check that $J_u \subset \operatorname{Aut}(\mathbb{A}^2)$ coincides with its centralizer which proves (1).

Without loss of generality we can assume that $G_{\tilde{U}} = J_u$. Since by (1) $G_{\tilde{V}}$ does not commute with $G_{\tilde{U}} = J_u$, $G_{\tilde{V}}$ is not a subgroup of J_u and since $G_{\tilde{V}}$ is infinite-diemnsional, $G_{\tilde{V}}$ is not a subgroup of J. Hence, (2) follows from amalgamated product structure of $Aut(\mathbb{A}^2)$.

Denote by Q(R) the quotient field of a ring R. The next lemma is proved in [15, Lemma 1.1].

Lemma 4.2. Let $U \subset Aut(X)$ be a one-parameter unipotent subgroup. Then

$$\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U) \subset \{f \cdot u \in \operatorname{Aut}(X) \mid f \in Q(\mathcal{O}(X)^U), u \in U\}.$$

Proof of Theorem 1.2. Assume $\varphi \colon G \to \operatorname{Aut}(X)$ is an isomorphism of abstract groups, where G is a linear algebraic group. If the connected component $G^{\circ} \subset G$ is commutative, the finite index subgroup of $\operatorname{Aut}(X)$ is commutative. This implies that the connected component $\operatorname{Aut}^{\circ}(X)$ is commutative. Hence, by [2, Theorem B] (see also [14, Corollary 3.2]) $\operatorname{Aut}(X)^{\circ}$ is a union of commutative algebraic groups. The group $\operatorname{Aut}(X)^{\circ}$ either does not contain unipotent subgroups and in this case $\operatorname{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or $\operatorname{Aut}(X)^{\circ}$ contains unipotent subgroups. In the later case either $\operatorname{Aut}(X)$ does not contain a copy of \mathbb{G}_m which implies that $\operatorname{Aut}^{\circ}(X)$ is the union of unipotent algebraic subgroups or $\operatorname{Aut}(X)$ contains a subgroup $T \times U$, where $T \simeq \mathbb{G}_m$ and $U \simeq \mathbb{G}_a$. We claim that in the second case $\operatorname{Aut}^{\circ}(X)$ is linear. Indeed, U is a root subgroup with respect to T. Moreover, $\mathcal{O}(X)^T \neq \mathcal{O}(X)^U$. To prove this we first note that there is

an open subset $S \subset X$ such that for any $x \in S$, $U.x \subset X$ is a one-dimensional orbit isomorphic to \mathbb{A}^1 . Hence, if $T \times U.x \subset X$ is one-dimensional, $T \times U.x \simeq \mathbb{A}^1$ which is not possible as any coppies of \mathbb{G}_m and \mathbb{G}_a in the automorphism group of \mathbb{A}^1 do not commute. Therefore, $T \times U.x \subset X$ is two-dimensional. This implies that $\mathcal{O}(X)^U$ is a proper subalgebra of $\mathcal{O}(X)^{T \times U} = (\mathcal{O}(X)^U)^T$ as they have different Krull dimension by [5, Theorem 11.1.1.(7)]. We conclude that $\mathcal{O}(X)^U = \mathcal{O}(X)^T$ and by Theorem 1.1 Aut(X) is not linear which proves the theorem in case G° is commutative.

Assume now towards a contradiction that G° is non-commutative.

Claim 2. G contains closed connected commutative subgroups U and V that do not commute and U normalizes V.

Indeed, if G is non-unipotent, it contains a maximal subtorus $T \subset G$ and a root subgroup normalized but not centralized by T. If G is unipotent, then G is nilpotent, i.e.,

$$(3) G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{ id \},$$

where $G_{i+1} = [G, G_i]$, $[G, G_i] = \{ghg^{-1}h^{-1} \mid g \in G, h \in G_i\}$. In particular, G_{n-1} is a subgroup of the center of G. Moreover, for any $H \subset G_{n-2} \setminus G_{n-1}$ isomorphic to \mathbb{G}_a , the group $V = H \times G_{n-1}$ is commutative. Choose a subgroup $U \subset G \setminus V$ isomorphic to \mathbb{G}_a that does not commute with V. Note that such U exists as G is non-commutative. Moreover, we claim that U normalizes V. Indded, $[U,V] \subset [G,G_{n-2}] = G_{n-1}$ which means that $uvu^{-1}v^{-1} \in G_{n-1}$ for any $u \in U$, $v \in V$. Hence, $uvu^{-1} \in G_{n-1}v \subset V$ which proves the claim.

Hence, $\overline{\varphi(U)}^{\circ}$, $\overline{\varphi(V)}^{\circ}$ \subset Aut(X) are closed connected commutative subgroups. Since $\underline{\varphi(U)}$ normalizes $\varphi(V)$, $\varphi(U)$ normalizes $\overline{\varphi(V)}^{\circ}$ \subset Aut(X) and hence $\overline{\varphi(U)}^{\circ}$ normalizes $\overline{\varphi(V)}^{\circ}$. By [2, Theorem B] (see also [14, Corollary 3.2]) $\overline{\varphi(U)}^{\circ}$, $\overline{\varphi(V)}^{\circ}$ \subset Aut(X) are unions of algebraic subgroups and hence $\overline{\varphi(U)}^{\circ} \ltimes \overline{\varphi(V)}^{\circ}$ is a union of algebraic subgroups. Note that $\overline{\varphi(U)}^{\circ}$ and $\overline{\varphi(V)}^{\circ}$ do not commute since otherwise the subgroups $\varphi^{-1}(\overline{\varphi(U)}^{\circ})$ and $\varphi^{-1}(\overline{\varphi(V)}^{\circ})$ of G would commute which is not the case as $\varphi^{-1}(\overline{\varphi(U)}^{\circ}) \cap U \subset U$ is a dense subgroup and analogously $\varphi^{-1}(\overline{\varphi(U)}^{\circ}) \cap U \subset U$ is a dense subgroup. Therefore, there are non-commuting algebraic subgroups in Aut(X).

We have two possibilities, Aut(X) does not contain a copy of \mathbb{G}_m or Aut(X) contains a copy of \mathbb{G}_m . Assume first that $\operatorname{Aut}(X)$ does not contain a copy of \mathbb{G}_m , then the semidirect product $\overline{\varphi(U)}^{\circ} \ltimes \overline{\varphi(V)}^{\circ}$ is the union of unipotent subgroups and in particular it contains a unipotent subgroup W that acts on X with a two-dimensional orbit O that is isomorphic to \mathbb{A}^2 , see [5, Theorem 11.1.1]. Pick subgroups $U \subset W$ and $V \subset W$ isomorphic to \mathbb{G}_a that generate the algebraic subgroup that acts with a two-dimensional orbit $O \simeq \mathbb{A}^2$. Take the maximal commutative subgroups H_1 and H_2 of $\operatorname{Aut}(X)$ that contain $\mathcal{O}(X)^{\tilde{U}} \cdot \tilde{U}$ and $\mathcal{O}(X)^{\tilde{V}} \cdot \tilde{V} \subset \operatorname{Aut}(X)$ respectively. Therefore, $\varphi^{-1}(H_1), \varphi^{-1}(H_2) \subset G$ are closed subgroups. Hence, the subgroup $H \subset G$ generated by $\varphi^{-1}(H_1)$ and $\varphi^{-1}(H_2)$ can be presented as a finite product of subgroups $\varphi^{-1}(H_1)$ and $\varphi^{-1}(H_2)$. On the other hand, the subgroup of Aut(X) generated by H_1 and H_2 cannot be presented as a finite product of subgroups H_1 and H_2 . Indeed, by Lemma 4.1(1) the restriction of H_1 to $O \simeq \mathbb{A}^2$ is the subgroup of $\operatorname{Aut}(O \simeq \mathbb{A}^2)$ generated by all one-dimensional unipotent subgroups that have the same generic orbits as $\tilde{U}|_{O}$. Analogous situation we have with H_2 . Now by Lemma 4.1(2), the subgroup $H = \langle H_1, H_2 \rangle \subset \operatorname{Aut}(X)$ restricted to $O \simeq \mathbb{A}^2$ cannot be presented as a finite product of H_1 and H_2 restricted to O. We arrive to the contradiction and finish the proof.

We are left with the case when $\operatorname{Aut}(X)$ contains a subgroup $T \simeq \mathbb{G}_m$. Since $\operatorname{Aut}_{\operatorname{alg}}(X)$ is not commutative, by [13, Theorem 1.3] there exists a copy of \mathbb{G}_a in $\operatorname{Aut}(X)$. Now, by Lemma 3.1 there is root subgroup $U \subset \operatorname{Aut}(X)$ with respect to T. By Theorem 1.1 we can assume that $\mathcal{O}(X)^T = \mathcal{O}(X)^U$. Moreover, the maximal commutative subgroup that contains T does not contain any algebraic subgroup different from T. Now, $\varphi^{-1}(T) \subset G$ acts on $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U)) \subset G$ by conjugations. By Lemma 5 $\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U)$ coincides with its centalizer. Hence, $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U)) \subset G$ also coincides with its centralizer and does not contain elements of finite order. Therefore, $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U)) \subset G$ is a closed unipotent subgroup. Moreover, $\overline{\varphi^{-1}(T)} \subset G$ is the closed commutative algebraic subgroup that contains infinitely many elements of finite order which implies that $\varphi^{-1}(T) = D \times V$, where $D \subset G$ is a torus of positive diemnsion and $V \subset G$ is a unipotent commutative subgroup.

Claim 3. The group $\varphi(D \times V)$ is a subgroup of $\varphi(T)$.

Indeed, $D \times V \subset \overline{\varphi^{-1}(T)}$ is a finite index subgroup. Hence, $\varphi(D \times V) \cap T \subset T$ is a finite index subgroup. Moreover, each element of $D \times V$ is divisible as $D \times V$ is the algebraic group. This implies that each element of $\varphi(D \times V)$ is divisible in $\varphi(D \times V)$. Consequently, each element of the intersection $T \cap \varphi(D \times V)$ is divisible and so $T \cap \varphi(D \times V)$ is a finite index subgroup of T that consists of divisible elements of T. Therefore, $T \cap \varphi(D \times V) = T$.

Claim 4. The unipotent subgroup $V \subset \varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U)) \subset G$ is trivial.

Indeed, by Lie-Kolchin Theorem [7, $\S17.6$] the unipotent group V acts on a unipotent subgroup $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U\cdot U))\subset G$ with a fixed point which is not possible as $\varphi(V) \subset T$, and T acts with a finite kernel on any element of

$$\{f \cdot u \in \operatorname{Aut}(X) \mid f \in Q(\mathcal{O}(X)^U), u \in U\}.$$

This proves the claim.

The algebraic subtorus $D \subset G$ acts on a unipotent subgroup $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot$ U)) and hence $\varphi^{-1}(\operatorname{Cent}_{\operatorname{Aut}(X)}(\mathcal{O}(X)^U \cdot U))$ decomposes into a direct sum of finitely many one-dimensional D-invariant unipotent subgroups $V_1, \ldots, V_k, k \geq 1$. The subgroups

$$\varphi(V_i) \subset \{ f \cdot u \in \operatorname{Aut}(X) \mid f \in Q(\mathcal{O}(X)^U), u \in U \}$$

are invariant under $\varphi(D)$ -action and in particular because $T \subset \varphi(D)$, $\varphi(V_i)$ are invariant under the action of T. Hence, $\varphi(V_i) = R_i \cdot U$, where $R_i \subset Q(\mathcal{O}(X)^U)$ is a vector subspace for each i = 1, ..., k. Therefore, at least one R_i is infinite-dimensional vector subspace of $Q(\mathcal{O}(X)^U)$, say R_1 . Since D acts on $V_1 \setminus \{0\}$ transitively, $\varphi(D)$ acts on $\varphi(V_1) \setminus \{0\}$ transitively too. But since R_1 is a infinite-dimensional vector space, there is no commutative subgroup of $GL(R_1)$ that acts transitively on $R_1 \setminus \{0\}$. We arrive to a contradiction which finishes the proof.

5. Proof of Theorem 1.3

We start this section with the next proposition.

Proposition 5.1. Assume \mathbb{K} is uncountable and X is a connected affine variety. Then $\operatorname{Aut}(X)$ is not isomorphic to the Cremona group $\operatorname{Bir}(\mathbb{A}^n) = \operatorname{Bir}(\mathbb{P}^n)$ as an abstract group for any n > 0.

Proof. The proof of this statement is similar to the proof of Theorem A in [2]. We give some details here for the convenience of the reader. Let

$$\operatorname{Tr} = \{(x_1, \dots, x_n) \mapsto (x_1 + c_1, \dots, x_n + c_n) \mid c_i \in \mathbb{K}\} \subset \operatorname{Aut}(\mathbb{A}^n) \subset \operatorname{Bir}(\mathbb{A}^n)$$

be the subgroup of all translations and Tr_i be the subgroup of translations of the *i*-th coordinate:

$$(4) (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_i + c, \ldots, x_n),$$

where c in K. Let $T \subset GL_n(K) \subset Aut(\mathbb{A}^n) \subset Bir(\mathbb{P}^n)$ be the diagonal group (viewed as a maximal torus) and let T_i be the subgroup of automorphisms

$$(5) (x_1, \ldots, x_n) \mapsto (x_1, \ldots, ax_i, \ldots, x_n),$$

where $a \in \mathbb{K}^*$. A direct computation shows that Tr (resp. T) coincides with its centralizer in $Bir(\mathbb{A}^n) = Bir(\mathbb{P}^n)$. Assume towards a contradiction that there is an isomorphism $\varphi : \operatorname{Bir}(\mathbb{A}^n) \to \operatorname{Aut}(X)$ of abstract groups. Similarly as in [2, Lemma 5.2] the groups $\varphi(\operatorname{Tr})$, $\varphi(\operatorname{Tr}_i), \varphi(T)$ and $\varphi(T_i)$ are closed subgroups of $\operatorname{Aut}(X)$ for all $i=1,\ldots,n$. Now the proof of [2, Theorem A] implies that $X \simeq \mathbb{A}^n$ and $\varphi(T) \subset \operatorname{Aut}(X \simeq \mathbb{A}^n)$ is isomorphic to the ndimensional algebraic torus. Assume $U \subset \operatorname{PGL}_{n+1}(\mathbb{K}) \subset \operatorname{Bir}(\mathbb{A}^n)$ is a root subgroup with respect to T. This means that T acts on U with two orbits. Therefore, $\varphi(U) \subset \operatorname{Aut}(X)$ is a constructible subset which is a group. We conclude that $\varphi(U) \subset \operatorname{Aut}(X)$ is an algebraic subgroup. Moreover, since $\operatorname{PGL}_{n+1}(\mathbb{K})$ is generated by its finitely many root subgroups Uwith respect to T, $\varphi(\operatorname{PGL}_{n+1}(\mathbb{K}))$ is generated by finitely many algebraic subgroups $\varphi(U)$ which implies that $\varphi(\operatorname{PGL}_{n+1}(\mathbb{K})) \subset \operatorname{Aut}(X \simeq \mathbb{A}^n)$ is an algebraic subgroup. Further, $\varphi(T) \subset \varphi(\operatorname{PGL}_{n+1}(\mathbb{K}))$ is a maximal subtorus that is isomorphic to \mathbb{G}_m^n which means that $\varphi(\operatorname{PGL}_{n+1}(\mathbb{K}))$ is a simple algebraic group of rank n that is isomorphic to $\operatorname{PGL}_{n+1}(\mathbb{K})$ as an abstract group. We conclude that $\varphi(\operatorname{PGL}_{n+1}(\mathbb{K}))$ is isomorphic to $\operatorname{PGL}_{n+1}(\mathbb{K})$ as an algebraic group. But this is not possible since the algebraic group $\mathrm{PGL}_{n+1}(\mathbb{K})$ does not act regularly on \mathbb{A}^n as the only closed subgroup H of codimension $\leq n$ of $\mathrm{PGL}_{n+1}(\mathbb{K})$ is a maximal parabolic subgroup such that $\operatorname{PGL}_{n+1}(\mathbb{K})/H \simeq \mathbb{P}^n$. We arrive to a contradiction with the isomorphism $X \simeq \mathbb{A}^n$. The proof follows.

Proof of Theorem 1.3. Let $H \subset Bir(X)$ be a maximal algebraic subtorus. By [12, Theorem 1 X is birationally equivalent to $\mathbb{A}^l \times Z$, where H acts on \mathbb{A}^l with an open orbit and $Z \subset \mathbb{A}^r$ is an affine variety with a trivial action of H. By Proposition 5.1 we can assume that Z is positive dimensional. Assume there is an isomorphism $\varphi : Bir(X) = Bir(\mathbb{A}^l \times Z) \to Aut(Y)$. Consider the maximal commutative subgroup G of $Bir(\mathbb{A}^l \times Z)$ of the form

$$\{(x_1,\ldots,x_l,z_1,\ldots,z_r)\mapsto (f_1(z)x_1,\ldots,f_l(z)x_l,g_1(z),\ldots,g_r(z))\mid f_i(z),g_i(z)\in\mathbb{K}(Z)\}$$

that contains the commutative subgroup

$$\{(x_1,\ldots,x_l,z_1,\ldots,z_r)\mapsto (f_1(z)x_1,\ldots,f_l(z)x_l,z_1,\ldots,z_r)\mid f_i(z)\in\mathbb{K}(Z)\},\$$

where the map

$$Z \to Z \ (z_1, \ldots, z_r) \mapsto (g_1(z), \ldots, g_r(z))$$

is a birational transformation of Z.

Claim 5. The subgroup $G \subset Bir(\mathbb{A}^l \times Z)$ coincides with its centralizer.

To prove this claim consider a birational transformation ϕ of $\mathbb{A}^l \times Z$ of the form

$$(x_1,\ldots,x_l,z_1,\ldots,z_r)\mapsto (F_1(x,z),\ldots,F_l(x,z),G_1(x,z),\ldots,G_r(x,z)),$$

where $F_i(x,z), G_i(x,z) \in \mathbb{K}(\mathbb{A}^l \times Z), x = (x_1,\ldots,x_l), z = (z_1,\ldots,z_r)$ that commutes with each element from G. Hence, ϕ commutes with $T \subset G$, i.e., with all birational transformations of $\mathbb{A}^l \times Z$ of the form

$$(x_1, \ldots, x_l, z_1, \ldots, z_r) \mapsto (t_1 x_1, \ldots, t_l x_l, z_1, \ldots, z_r), t_1, \ldots, t_r \in \mathbb{K}^*.$$

Direct computations show that

$$t_i F_i(t_1^{-1}x_1, \dots, t_l^{-1}x_l, z_1, \dots, z_r) = F_i(x_1, \dots, x_l, z_1, \dots, z_r)$$

and

$$G_i(t_1^{-1}x_1,\ldots,t_l^{-1}x_l,z_1,\ldots,z_r) = G_i(x_1,\ldots,x_l,z_1,\ldots,z_r)$$

for all $t_1, \ldots, t_r \in \mathbb{K}^*$, $i = 1, \ldots, l$, $j = 1, \ldots, r$. Therefore, $F_i(x, z) = h_i(z)x_i$ for some $h_i(z) \in \mathbb{K}(Z)$ and $G_j \in \mathbb{K}(Z)$. This proves the claim.

By [10, Lemma 2.4] $\varphi(G) \subset \operatorname{Aut}(Y)$ is a closed ind-subgroup and by [2, Theorem B] (see also [14, Corollary 3.2]) the connected component $\varphi(G)^{\circ} \subset \operatorname{Aut}(Y)$ is the union of commutative algebraic subgroups. Since $\varphi(G)^{\circ} \subset \varphi(G)$ is a countable index subgroup, there is an element $g = (f_1(z)x_1, x_2, \ldots, x_l, z_1, \ldots, z_r) \in G$ with non-constant f_1 such that $\varphi(g)$ belongs to $\varphi(G)^{\circ}$. Since $\varphi(G)^{\circ}$ is the union of connected algebraic groups, $\varphi(g)$ belongs to a connected algebraic subgroup of $\varphi(G)^{\circ}$ and hence there exists k > 0 such that $\varphi(g)^k$ is a divisible element (see Section 2.4). The element g^k again has a form $(\tilde{f}_1(z)x_1, x_2, \ldots, x_l, z_1, \ldots, z_r)$ with a non-constant $\tilde{f}_1 = \frac{r_1}{r_2}$, where $r_1, r_2 \in \mathcal{O}(Z)$. Moreover, $g^k \in G$ is not divisible. More precisely, without loss of generality we can assume that r_1 is non-constant and hence, there is no $h \in G$ such that $h^{\deg r_1+1} = g^k$. Indeed, otherwise there would exist a rational function $s \in \mathbb{K}(Z)$ such that $s^{\deg r_1+1} = \tilde{f}_1 = \frac{r_1}{r_2}$ which is not the case. We get the contradiction which proves the theorem.

REFERENCES

- [1] J. Blanc, and A. Dubouloz, Affine surfaces with a huge group of automorphisms, Int. Math. Res. Not., **2015**, Iss. 2, pp 422–459.
- [2] S. Cantat, A. Regeta, and J. Xie, Families of commuting automorphisms, and a characterization of the affine space, arXiv:1912.01567 to appear in Amer. J. Math.
- [3] Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group, arXiv:1701.00275.
- [4] H. Flenner, M. Zaidenberg, On the uniqueness of \mathbb{C}^* -actions on affine surfaces, Affine Algebraic Geometry, 97–111, Contemporary Mathematics **369**, Amer. Math. Soc. Providence, R.I., 2005.
- [5] J.-P. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties, arXiv:1809.04175.
- [6] J.-P. Furter, S. Lamy, Normal subgroup generated by a plane polynomial automorphism, Transf. Groups 15, no 3 (2010), 577–610.
- [7] J. E. Humphreys, *Linear algebraic groups*, Springer-Verlag, New York-Heidelberg, 1975, Graduate Texts in Mathematics, No. 21.
- [8] H. W. E. Jung, Uber ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
- [9] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41.
- [10] A. Liendo, A. Regeta and C. Urech, *Characterization of affine surfaces with a torus action by their automorphism groups*, arXiv:1805.03991, to appear in Ann. Sc. Norm. Super. Pisa, doi:10.2422/2036-2145.201905_009.
- [11] Z. S. Marciniak, A Note on Free Products of Linear Groups, Proc. of the Amer. Math. Soc. Vol. 94, No. 1 (1985), pp. 46-48.
- [12] H. Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) **34** (1963), 151-155.
- [13] A. Perepechko and A. Regeta, When is the automorphism group of an affine variety nested?, to appear in Transform. Groups., doi.org/10.1007/s00031-022-09711-1
- [14] A. Regeta and I. van Santen, Characterizing Affine Toric Varieties via the Automorphism Group, arXiv:2112.04784
- [15] A. Regeta and I. van Santen, Characterizing smooth spherical varieties via the automorphism group, in preparation.
- [16] J.P. Serre, Trees, Springer, Berlin Heidelberg New York, 1980.
- [17] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) **25** (1966), no. 1-2, 208–212.

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany $Email\ address$: andriyregeta@gmail.com