WHEN IS THE AUTOMORPHISM GROUP OF AN AFFINE VARIETY LINEAR?

ANDRIY REGETA

Abstract

$\operatorname{Abstract}$. Let $\operatorname{Aut}_{\mathrm{alg}}(X)$ be the subgroup of the group of regular automorphisms $\operatorname{Aut}(X)$ of an affine algebraic variety X generated by all connected algebraic subgroups. We prove that if $\operatorname{dim} X \geq 2$ and if $\operatorname{Aut}_{\text {alg }}(X)$ is "rich enough", $\operatorname{Aut}_{\text {alg }}(X)$ is not linear, i.e., it cannot be embedded into $\mathrm{GL}_{n}(\mathbb{F})$, where \mathbb{K} is an algebraically closed field of characteristic zero and \mathbb{F} is a field. Moreover, $\operatorname{Aut}(X)$ is isomorphic to an algebraic group as an abstract group only if the connected component of $\operatorname{Aut}(X)$ is either the algebraic torus or a direct limit of commutative unipotent groups. Finally, we prove that for an uncountable \mathbb{K} the group of birational transformations of X cannot be isomorphic to the group of automorphisms of an affine variety if X is endowed with a rational action of a positive-dimensional linear algebraic group.

1. Introduction

In this paper we work over algebraically closed field \mathbb{K} of characteristic zero, and X always denotes an irreducible affine variety. It is well-known that the automorphism group of an affine variety may be very large. For example, the automorphism group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ of the affine plane \mathbb{A}^{2} contains a free product of two polynomial rings in one variable. Consequently, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is infinite-dimensional and cannot be given a structure of an algebraic group. Moreover, it is shown in 3, Proposition 2.3] that $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is not linear, i.e. $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ cannot be embedded into the general linear group $\mathrm{GL}_{n}(\mathbb{K})$ as an abstract group. The first main result of the present note is a generalization of this statement to a big family of affine varieties.

It is well-known (Proposition 2.3) that the automorphism group $\operatorname{Aut}(X)$ has a structure of an ind-group (see Section 2.2 for the definition) and if $\operatorname{dim} X \geq 2, \operatorname{Aut}(X)$ is infinitedimensional unless $\operatorname{Aut}(X)$ is a countable extension of the algebraic torus. But even if the automorphism group $\operatorname{Aut}(X)$ is infinite-dimensional it may happen that $\operatorname{Aut}(X)$ embeds into $\mathrm{GL}_{n}(\mathbb{K})$. For exmaple, [10, Example 6.14] shows that there is an affine surface S such that $\operatorname{Aut}(S)$ is isomorphic to the polynomial ring in one variable $\mathbb{K}[t]$ and as an abstract additive group $\operatorname{Aut}(S)$ is isomorphic to the additive group of the base field and hence embeds into $\mathrm{GL}_{2}(\mathbb{K})$. However, if $\operatorname{Aut}(X)$ is rich enough, $\operatorname{Aut}(X)$ cannot be embedded into $\mathrm{GL}_{n}(\mathbb{K})$. More precisely, we prove the following statement.

We denote the additive and multiplicative group of the field \mathbb{K} by \mathbb{G}_{a} and \mathbb{G}_{m} respectively. For a given affine variety X we denote by $\operatorname{Aut}_{\text {alg }}(X)$ the subgroup of $\operatorname{Aut}(X)$ generated by all connected algebraic subgroups.

Theorem 1.1. Assume X is at least two-dimensional variety such that $\operatorname{Aut}(X)$ contains an algebraic subtorus $T \simeq \mathbb{G}_{m}^{k}, k \geq 1$, a root subgroup $U \subset \operatorname{Aut}(X)$ and the invariant subrings $\mathcal{O}(X)^{T}, \mathcal{O}(X)^{U} \subset \mathcal{O}(X)$ do not coincide. Then $\operatorname{Aut}_{\text {alg }}(X)$ cannot be embedded into $\mathrm{GL}_{n}(\mathbb{F})$ for any field \mathbb{F}.

The assumption in Theorem 1.1 is necessary. Indeed, consider X isomorphic to $\mathbb{A}^{1} \times C$, where C is a smooth affine curve having trivial automorphism group and no non-constant
invertible regular functions. By Remark $3.2 \operatorname{Aut}(X)$ is isomorphic to $\mathbb{G}_{m} \ltimes \mathcal{O}(C)^{+}$which can be embedded into $\mathbb{K}(C)^{*} \ltimes \mathbb{K}(C)^{+}$, where $\mathbb{K}(C)$ is the function field of C.

If X admits no \mathbb{G}_{m}-action, but admits two non-commuting \mathbb{G}_{a}-actions, $\operatorname{Aut}(X)$ can be embedded into $\mathrm{GL}_{n}(\mathbb{K})$. For example, there exists an affine surface X (see [1, Example 4.1.3]) that has an automorphism $\operatorname{group} \operatorname{Aut}(X)=\operatorname{Aut}_{\text {alg }}(X) \simeq \mathbb{K}[x] * \mathbb{K}[y]$ which is linear by [11, Theorem] as additive groups $\mathbb{K}[x] \simeq \mathbb{K}[y]$ are isomorphic as abstract groups to \mathbb{G}_{a}.

The second question we study is whether the automorphism group of an affine variety can be isomorphic to a linear algebraic group. More precisely, we have the following statement which is the main result of the paper.

Theorem 1.2. Let X be an affine variety. If $\operatorname{Aut}(X)$ is isomorphic to a linear algebraic group as an abstract group, then the connected component $\mathrm{Aut}^{\circ}(X)$ is commutative. Moreover, in this case $\operatorname{Aut}^{\circ}(X)$ is either the algebraic torus or a direct limit of commutative unipotent groups.

We denote by $\operatorname{Bir}(X)$ the group of birational transformations of X. It is well-known that such a group may be very large. For example the Cremona group $\operatorname{Bir}\left(\mathbb{A}^{n}\right)=\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ for $n>1$ is known to be very big, in particular, much larger than $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$. Proposition 5.1 shows that the Cremona group $\operatorname{Bir}\left(\mathbb{A}^{n}\right)=\operatorname{Bir}\left(\mathbb{P}^{n}\right), n>0$, is not isomorphic to the automorphism group of any affine variety. Moreover, if $\operatorname{Bir}(X)$ is "rich enough", $\operatorname{Bir}(X)$ is also not isomorphic to the automorphism group of any affine variety. More precisely, we prove the following statement.
Theorem 1.3. Assume \mathbb{K} is uncountable and X, Y are affine irreducible algebraic varieties. Assume X is endowed with a rational action of a positive-dimensional linear algebraic group. Then the group of birational transformations $\operatorname{Bir}(X)$ is not isomorphic to $\operatorname{Aut}(Y)$.

Acknowledgements: I would like to thank Ivan Arzhantsev and Ievgen Makedonskyi for useful comments.

2. Preliminaries

2.1. Derivations and group actions. Recall that X is an irreducible affine algebraic variety. A derivation δ is called locally finite if it acts locally finitely on $\mathcal{O}(X)$, i.e., for any function $f \in \mathcal{O}(X)$ there is a finite-dimensional vector subspace $W \subset \mathcal{O}(X)$ such that $f \in W$ and W is stable under action of δ. A derivation $\delta \in \operatorname{Der}(\mathcal{O}(X))$ is called locally nilpotent if for any function $f \in \mathcal{O}(X)$ there exists $k \in \mathbb{N}$ (which depends on f) such that $\delta^{k}(f)=0$. Note that there is a one-to-one correspondence between locally nilpotent derivations on $\mathcal{O}(X)$ and \mathbb{G}_{a}-actions on X given by the map $\delta \mapsto\{t \mapsto \exp (t \delta)\}$.

An element $u \in \operatorname{Aut}(X)$ is called unipotent if $u=\exp (\partial)$ for some locally nilpotent derivation ∂.
2.2. Ind-groups. The notion of an ind-group goes back to Shafarevich who called it an infinite dimensional algebraic group (see [17]). We refer to [5] for basic notions in this context.

Definition 2.1. By an affine ind-variety we understand an injective limit $V=\underline{\longrightarrow} V_{i}$ of an ascending sequence $V_{0} \hookrightarrow V_{1} \hookrightarrow V_{2} \hookrightarrow \ldots$ such that the following holds:
(1) $V=\bigcup_{k \in \mathbb{N}} V_{k}$;
(2) each V_{k} is an affine algebraic variety;
(3) for all $k \in \mathbb{N}$ the embedding $V_{k} \hookrightarrow V_{k+1}$ is closed in the Zariski topology.

For simplicity we will call an affine ind-variety simply an ind-variety.
An ind-variety V has a natural topology: a subset $S \subset V$ is called closed, resp. open, if $S_{k}:=S \cap V_{k} \subset V_{k}$ is closed, resp. open, for all $k \in \mathbb{N}$. A closed subset $S \subset V$ has a natural structure of an ind-variety and is called an ind-subvariety.

A set theoretical product of ind-varieties admits a natural structure of an ind-variety. A morphism between ind-varieties $V=\bigcup_{m} V_{m}$ and $W=\bigcup_{l} W_{l}$ is a map $\phi: V \rightarrow W$ such that for every $m \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that $\phi\left(V_{m}\right) \subset W_{l}$ and that the induced map $V_{m} \rightarrow W_{l}$ is a morphism of algebraic varieties. This allows us to give the following definition.

Definition 2.2. An ind-variety H is said to be an ind-group if the underlying set H is a group such that the map $H \times H \rightarrow H$, defined by $(g, h) \mapsto g h^{-1}$, is a morphism of ind-varieties.

A closed subgroup G of H is a subgroup that is at the same time a closed subset. In this case G is again an ind-group with respect to the induced ind-variety structure. A closed subgroup G of an ind-group $H=\underline{\longrightarrow} H_{i}$ is called an algebraic subgroup if G is contained in H_{i} for some i.

The next result can be found in [5, Section 5].
Proposition 2.3. Let X be an affine variety. Then $\operatorname{Aut}(X)$ has the structure of an ind-group such that a regular action of an algebraic group H on X induces an ind-group homomorphism $H \rightarrow \operatorname{Aut}(X)$.
2.3. Root subgroups. In this section we describe root subgroups of $\operatorname{Aut}(X)$ for a given affine variety X with respect to a subtorus.

Definition 2.4. Let T be a subtorus in $\operatorname{Aut}(X)$, i.e. a closed algebraic subgroup isomorphic to a torus. A closed algebraic subgroup $U \subset \operatorname{Aut}(X)$ isomorphic to \mathbb{G}_{a} is called a root subgroup with respect to T if the normalizer of U in $\operatorname{Aut}(X)$ contains T.

Since \mathbb{G}_{a} contains no non-trivial closed normal subgroups, every non-trivial regular action is faithful. Hence, such an algebraic subgroup U corresponds a non-trivial normalized \mathbb{G}_{a}-action on X, i.e. a \mathbb{G}_{a}-action on X whose image in $\operatorname{Aut}(X)$ is normalized by T.

Assume $U \subset \operatorname{Aut}(X)$ is a root subgroup with respect to T. Since T normalizes U, we can define an action $\varphi: T \rightarrow \operatorname{Aut}(U)$ of T on U given by $t . u=t \circ u \circ t^{-1}$ for all $t \in T$ and $u \in U$. Moreover, since $\operatorname{Aut}(U) \simeq \mathbb{G}_{m}$, such an action corresponds to a character of the torus $\chi: T \rightarrow \mathbb{G}_{m}$, which does not depend on the choice of isomorphism between $\operatorname{Aut}(U)$ and \mathbb{G}_{m}. This character is called the weight of U. The algebraic subgroups T and U generate an algebraic subgroup in $\operatorname{Aut}(X)$ isomorphic to $\mathbb{G}_{a} \rtimes_{\chi} T$.

Consider a nontrivial algebraic action of \mathbb{G}_{a} on X, given by $\lambda: \mathbb{G}_{a} \rightarrow \operatorname{Aut}(X)$. If $f \in \mathcal{O}(X)$ is \mathbb{G}_{a}-invariant, then the modification $f \cdot \lambda$ of λ is defined in the following way:

$$
(f \cdot \lambda)(r) x=\lambda(f(x) r) x
$$

for $r \in \mathbb{C}$ and $x \in X$. This is again a \mathbb{G}_{a}-action. It is not difficult to see that if X is irreducible and $f \neq 0$, then $f \cdot \lambda$ and λ have the same invariants. If $U \subset \operatorname{Aut}(X)$ is a closed algebraic subgroup isomorphic to \mathbb{G}_{a} and if $f \in \mathcal{O}(X)^{U}$ is a U-invariant, then in a similar way we define the modification $f \cdot U$ of U. Pick an isomorphism $\lambda: \mathbb{G}_{a} \rightarrow U$ and set

$$
f \cdot U=\underset{3}{\left\{(f \cdot \lambda)(r) \mid r \in \mathbb{G}_{a}\right\} .}
$$

2.4. Divisible elements. We call an element f in a group G divisible by n if there exists an element $g \in G$ such that $g^{n}=f$. An element is called divisible if it is divisible by all $n \in \mathbb{Z}^{+}$. If G is an agebraic group, then by [10, Lemma 3.12] for any $f \in G$ there exist $k>0$ that depends on f such that f^{k} is a divisible element.

3. Proof of Theorem 1.1

The following lemma is well known and appeared in similar form in [4, Lemma 3.1].
Lemma 3.1. Assume that \mathfrak{g} is \mathbb{Z}^{r}-graded for $r>0$ and consider a locally finite element $z \in \mathfrak{g}$ that does not belong to the zero component \mathfrak{g}_{0}. Then there exists a locally nilpotent homogeneous component of z of non-zero weight.

Proof. Let us take the convex hull $P(z) \subset \mathbb{Z}^{r} \otimes \mathbb{Q}$ of component weights of z. Then for any non-zero vertex $v \in P(z)$ the corresponding homogeneous component is locally nilpotent. The details are left to the reader.

Proof of Theorem 1.1. Since U is a root subgroup with respect to T, T acts on U by conjugations which implies that T acts on $\mathbb{O}(X)^{U}$. By assumption, there is a T-semiinvariant $f \in \mathcal{O}(X)^{U}$ of non-zero weight. Hence, $\left\{f^{k} \cdot U \subset \operatorname{Aut}(X) \mid k \in \mathbb{N}\right\}$ are root subgroups with respect to T with different weights. Without loss of generality we can assume that U is a root subgroup with respect to T of non-zero weight since otherwise we can just replace U by $f \cdot U$.

Claim 1. The subgroup

$$
G=T \ltimes\left(\bigoplus_{k \geq 1} f^{k} \cdot U\right) \subset \operatorname{Aut}(X)
$$

is not linear.
Indeed, assume towards a contradiction that the subgroup $G \subset \operatorname{Aut}(X)$ is linear, i.e., there is an embedding $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{K})$. Since G is solvable, its image $\varphi(G) \subset \mathrm{GL}_{n}(\mathbb{K})$ is also solvable which implies that the closure $\overline{\varphi(G)} \subset \mathrm{GL}_{n}(\mathbb{K})$ is solvable too. Note that $\overline{\varphi(G)}$ is an algebraic subgroup of $\mathrm{GL}_{n}(\mathbb{K})$. Hence, the connected component $\overline{\varphi(G)}{ }^{\circ}$ is conjugate to the Borel subgroup $B \subset \mathrm{GL}_{n}(\mathbb{K})$ of upper triangular matrices. Therefore, $\underline{\text { without loss of generality we can assume that } \overline{\varphi(G)}}{ }^{\circ} \subset B$. We claim that $\varphi(G) \subset$ $\overline{\varphi(G)}^{\circ} \subset B$. Indeed, each element $g \in G$ belongs to an algebraic subgroup of G and hence is divisible. Consequently, $\varphi(g) \in \overline{\varphi(G)}$ is divisible too. If $\varphi(g) \notin B, \varphi(g)$ belongs to a finite extension of $\varphi(B)$, i.e., can be written as a product $h b$, where $b \in B$ and h is a non-trivial element of finite order. The product $h b$ can be divisible in $\varphi(G)$ if and only if h is the identity element. We conclude that $\varphi(G) \subset B$ which porves the claim. Therefore, the commutator $[G, G]=\bigoplus_{k \geq 1} f^{k} \cdot U$ embedds into $[B, B]$. In other words $\varphi\left(\bigoplus_{k \geq 1} f^{k} \cdot U\right)$ is a subgroup of the unipotent radical of B.

Consider the closed subgroup $\overline{\varphi(T)}^{\circ} \ltimes \overline{\varphi\left(f^{k} \cdot U\right)} \subset B \subset \mathrm{GL}_{n}(\mathbb{K})$. The subgroup $\overline{\varphi\left(f^{k} \cdot U\right)}=\overline{\varphi\left(f^{k} \cdot U\right)}{ }^{\circ} \subset[B, B]$ is unipotent and $\overline{\varphi(T)} \subset B$ is an algebraic subgroup. Hence, $\overline{\varphi(T)}{ }^{\circ} \subset \overline{\varphi(T)}$ is a finite index subgroup which implies that $\overline{\varphi(T)}^{\circ}$ contains infinitely many elements of finite order of $\varphi(T)$. As a consequence, $\overline{\varphi(T)}$ contains a copy of algebraic subtorus of positive dimension. Pick a big enough $k \in \mathbb{N}$ such that the kernel of T-action on $f^{k} \cdot U$ is $\left\langle\xi_{k}\right\rangle$, where ξ_{k} is an element of order bigger than the index $s=\left[\overline{\varphi(T)}: \overline{\varphi(T)}{ }^{\circ}\right]$ and ξ_{k} acts on $\mathbb{K} f$ non-trivially. Hence, $\xi_{k}^{s} \in \overline{\varphi(T)}^{\circ}$ and since k is
chosen to be big enough, we have that

$$
\begin{equation*}
\xi_{k}^{s} \text { acts on } \mathbb{K} f \text { non-trivially. } \tag{1}
\end{equation*}
$$

Since $\varphi\left(\xi_{k}^{s}\right)$ centralizes $\varphi\left(f^{k} \cdot U\right), \varphi\left(\xi_{k}^{s}\right)$ centralizes $\overline{\varphi\left(f^{k} \cdot U\right)}$ too. Choose a subtorus of $\overline{\varphi(T)}{ }^{\circ}$ which we denote by \tilde{T} that contains $\varphi\left(\xi_{k}^{s}\right)$. Pick $u_{k} \in \varphi\left(f^{k} \cdot U\right)$ and consider the unipotent subgroup $V_{k}=\left\langle\tilde{T} \cdot u_{k}\right\rangle=\left\langle t u_{k} t^{-1} \mid t \in \tilde{T}\right\rangle \subset \mathrm{GL}_{n}(\mathbb{K})$. Note that \tilde{T} normalizes V_{k}. Hence, the unipotet group V_{k} is a direct product of root subgroups with respect to \tilde{T}. The kernel of \tilde{T}-action on V_{k} contains $\left\langle\varphi\left(\xi_{k}^{s}\right)\right\rangle$. Since $\mathrm{GL}_{n}(\mathbb{K})$ is an algebraic group, i.e., is finitely dimensional, for a big enough k, the weights of all root subgroups of V_{k} with respect to \tilde{T} are the same as the weights of the root subgroups of $V_{k+1}=\left\langle\tilde{T} \cdot u_{k+1}\right\rangle$, where $u_{k+1} \in \varphi\left(f^{k+1} \cdot U\right) \subset[B, B] \subset \mathrm{GL}_{n}(\mathbb{K})$. Hence, $\left\langle\varphi\left(\xi_{k}^{s}\right)\right\rangle$ acts trivially on V_{k+1}. As a consequence, $\left\langle\xi_{k}^{s}\right\rangle$ acts trivially on $\varphi^{-1}\left(V_{k}\right) \subset f^{k} \cdot U$ and on $\varphi^{-1}\left(V_{k+1}\right) \subset f^{k+1} \cdot U$. Therefore, $\left\langle\xi_{k}^{s}\right\rangle$ acts trivially on $\overline{\varphi^{-1}\left(V_{k}\right)} \subset f^{k} \cdot U$ and on $\overline{\varphi^{-1}\left(V_{k+1}\right)} \subset f^{k+1} \cdot U$ which implies that $\left\langle\xi_{k}^{s}\right\rangle$ acts trivially on $\mathbb{K} f$. This contradicts (1) which proves the theorem if X admits $\mathbb{G}_{m^{-}}$and \mathbb{G}_{a}-actions.

If X admits two non-commuting \mathbb{G}_{m}-actions, then by Lemma 3.1 X admits a \mathbb{G}_{a}-action and the claim of the theorem follows from above.

Remark 3.2. Let C be a smooth affine curve having trivial automorphism group and no non-constant invertible regular functions. Then

$$
\operatorname{Aut}\left(\mathbb{A}^{1} \times C\right)=T \ltimes \mathcal{O}(C) \cdot U,
$$

where $T=\left\{(x, y) \mapsto(a x, y) \mid a \in \mathbb{K}^{*}\right\}$ and $U=\{(x, y) \mapsto(x+b, y) \mid b \in \mathbb{K}\}$. Indeed, let $\varphi: \mathbb{A}^{1} \times C \rightarrow \mathbb{A}^{1} \times C$ be an automorphism of $\mathbb{A}^{1} \times C$. By [10, Lemma 6.13] the second projection $\mathrm{pr}_{2}: \mathbb{A}^{1} \times C \rightarrow C$ is invariant under automorphisms of $\mathbb{A}^{1} \times C$. Hence, $\varphi(x, y)=(\psi(x, y), y)$ for all $x \in \mathbb{A}^{1}, y \in C$ and some morphism $\psi: \mathbb{A}^{1} \times C \rightarrow \mathbb{A}^{1}$. For every $y \in C, \psi(\cdot, y): \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is an isomorphism. Hence, $\psi(x, y)=a(y) x+b(y)$, where $a, b \in \mathcal{O}(C)$. Since φ is an isomorphism, a is an invertible regular function, i.e., $a \in \mathbb{K}^{*}$.

Remark 3.3. As it is already mentioned in the introduction, it is proved in 3] that $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is not linear, i.e., it cannot be embedded into $\mathrm{GL}_{n}(\mathbb{K})$ for any $n \in \mathbb{N}$. This also follows from Theorem 1.1. Moreover, in [3, Proposition 2.3] it is proved that there is a countably generated subgroup of the subgroup

$$
\mathrm{J}=\left\{(a x+c, b y+f(x)) \mid a, b \in \mathbb{C}^{*}, c \in \mathbb{C}, f(y) \in \mathbb{C}[x]\right\} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)
$$

that is not linear. We note that by the Jung-Van der Kulk Theorem (see [8] and [9]) $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is the amalgamated product of J and the group of affine transformations Aff ${ }_{2}$ of \mathbb{A}^{2} along their intersection C, i.e.,

$$
\begin{equation*}
\operatorname{Aut}\left(\mathbb{A}^{2}\right)=\operatorname{Aff}_{2} *_{C} \mathrm{~J} \tag{2}
\end{equation*}
$$

Using such an amalgamated product we claim that any representation of a subgroup

$$
\operatorname{SAut}\left(\mathbb{A}^{2}\right)=\left\{(f, g) \in \operatorname{Aut}\left(\mathbb{A}^{2}\right) \left\lvert\, \operatorname{jac}(f)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)=1\right.\right\}
$$

is trivial, i.e., any homomorphism $\varphi: \operatorname{SAut}\left(\mathbb{A}^{2}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{K})$ is trivial. To show this we first note that the amalgamated product structure of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ induces the amalgamated product structure of $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$. More precisely, $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$ is the amalgamated product of the group SAff_{2} of special affine transformations of \mathbb{A}^{2} and the subgroup

$$
\mathrm{J}^{s}=\left\{(a x+c, b y+f(x)) \mid a, b \in \mathbb{C}^{*}, a b=1, c \in \mathbb{C}, f(y) \in \mathbb{C}[x]\right\} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right) .
$$

By [3, Proposition 2.3] there is no embedding of J^{s} into $\mathrm{GL}_{n}(\mathbb{K})$. Hence, there is a nonidentity element $g \in \mathrm{~J}^{s}$ such that g is the kernel of φ. Therefore, the normal subgroup that contains g is also in the kernel of φ. But by [6] any normal subgroup that contains g coincides with $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$ which proves the claim.

Moreover, any group homomorphism $\psi: \operatorname{Aut}\left(\mathbb{A}^{2}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{K})$ factors through the homomorphism jac: $\operatorname{Aut}\left(\mathbb{A}^{2}\right) \rightarrow \mathbb{G}_{m}$. Indeed, similarly as above, there is $g \in \mathrm{~J}^{s}$ that is in the kernel of ψ. Hence, by the same argument as above the normal subgroup generated by g contains $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$ and the claim follows.

4. Automorphism group that is isomorphic to a linear algebraic group

We begin this section with the lemma that is used in the proof of Theorem 1.2.
Lemma 4.1. Let $\tilde{U}, \tilde{V} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ be two one-dimensional unipotent subgroups that act on \mathbb{A}^{2} with different generic orbits. Then
(1) the subgroup $G_{\tilde{U}} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ generated by all one-dimensional unipotent subgroups that have the same generic orbits as \tilde{U} coincides with its centralizer;
(2) the subgroup generated by $G_{\tilde{U}}$ and $G_{\tilde{V}}$ cannot be presented as a finite product of $G_{\tilde{U}}$ and $G_{\tilde{V}}$.
Proof. Recall that the group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ has the amalgamated product structure $\mathrm{Aff}_{2} *_{C} \mathrm{~J}$, see (2). By [16] any closed algebraic subgroup of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is conjugate to one of the factors Aff 2 or J. Since $G_{\tilde{U}} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is infinite-dimensional, $G_{\tilde{U}}$ is conjugate to a subgroup of J. Moreover, since $G_{\tilde{U}}$ is infinite-dimensional, commutative and consists of unipotent elements, $G_{\tilde{U}}$ is conjugate to a subgroup of

$$
\mathrm{J}_{u}=\{(x, y+f(x)) \mid f(y) \in \mathbb{C}[x]\} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)
$$

Since $G_{\tilde{U}}$ is generated by all one-dimensional unipotent subgroups that have the same generic orbits, $G_{\tilde{U}}$ is conjugate to the whole J_{u}. It is easy to check that $\mathrm{J}_{u} \subset \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ coincides with its centralizer which proves (1).

Without loss of generality we can assume that $G_{\tilde{U}}=\mathrm{J}_{u}$. Since by (1) $G_{\tilde{V}}$ does not commute with $G_{\tilde{U}}=\mathrm{J}_{u}, G_{\tilde{V}}$ is not a subgroup of J_{u} and since $G_{\tilde{V}}$ is infinite-diemnsional, $G_{\tilde{V}}$ is not a subgroup of J. Hence, (2) follows from amalgamated product structure of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$.
Denote by $Q(R)$ the quotient field of a ring R. The next lemma is proved in 15, Lemma 1.1].
Lemma 4.2. Let $U \subset \operatorname{Aut}(X)$ be a one-parameter unipotent subgroup.Then

$$
\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right) \subset\left\{f \cdot u \in \operatorname{Aut}(X) \mid f \in Q\left(\mathcal{O}(X)^{U}\right), u \in U\right\}
$$

Proof of Theorem 1.2. Assume $\varphi: G \rightarrow \operatorname{Aut}(X)$ is an isomorphism of abstract groups, where G is a linear algebraic group. If the connected component $G^{\circ} \subset G$ is commutative, the finite index subgroup of $\operatorname{Aut}(X)$ is commutative. This implies that the connected component $\operatorname{Aut}^{\circ}(X)$ is commutative. Hence, by [2, Theorem B] (see also [14, Corollary 3.2]) $\operatorname{Aut}(X)^{\circ}$ is a union of commutative algebraic groups. The group $\operatorname{Aut}(X)^{\circ}$ either does not contain unipotent subgroups and in this case $\operatorname{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or $\operatorname{Aut}(X)^{\circ}$ contains unipotent subgroups. In the later case either $\operatorname{Aut}(X)$ does not contain a copy of \mathbb{G}_{m} which implies that $\operatorname{Aut}^{\circ}(X)$ is the union of unipotent algebraic subgroups or $\operatorname{Aut}(X)$ contains a subgroup $T \times U$, where $T \simeq \mathbb{G}_{m}$ and $U \simeq \mathbb{G}_{a}$. We claim that in the second case $\operatorname{Aut}^{\circ}(X)$ is linear. Indeed, U is a root subgroup with respect to T. Moreover, $\mathcal{O}(X)^{T} \neq \mathcal{O}(X)^{U}$. To prove this we first note that there is
an open subset $S \subset X$ such that for any $x \in S, U . x \subset X$ is a one-dimensional orbit isomorphic to \mathbb{A}^{1}. Hence, if $T \times U . x \subset X$ is one-dimensional, $T \times U . x \simeq \mathbb{A}^{1}$ which is not possible as any coppies of \mathbb{G}_{m} and \mathbb{G}_{a} in the automorphism group of \mathbb{A}^{1} do not commute. Therefore, $T \times U \cdot x \subset X$ is two-dimensional. This implies that $\mathcal{O}(X)^{U}$ is a proper subalgebra of $\mathcal{O}(X)^{T \times U}=\left(\mathcal{O}(X)^{U}\right)^{T}$ as they have different Krull dimension by [5, Theorem 11.1.1.(7)]. We conclude that $\mathcal{O}(X)^{U}=\mathcal{O}(X)^{T}$ and by Theorem 1.1 $\operatorname{Aut}(X)$ is not linear which proves the theorem in case G° is commutative.

Assume now towards a contradiction that G° is non-commutative.
Claim 2. G contains closed connected commutative subgroups U and V that do not commute and U normalizes V.

Indeed, if G is non-unipotent, it contains a maximal subtorus $T \subset G$ and a root subgroup normalized but not centralized by T. If G is unipotent, then G is nilpotent, i.e.,

$$
\begin{equation*}
G=G_{0} \triangleright G_{1} \triangleright \cdots \triangleright G_{n}=\{\mathrm{id}\} \tag{3}
\end{equation*}
$$

where $G_{i+1}=\left[G, G_{i}\right],\left[G, G_{i}\right]=\left\{g h g^{-1} h^{-1} \mid g \in G, h \in G_{i}\right\}$. In particular, G_{n-1} is a subgroup of the center of G. Moreover, for any $H \subset G_{n-2} \backslash G_{n-1}$ isomorphic to \mathbb{G}_{a}, the group $V=H \times G_{n-1}$ is commutative. Choose a subgroup $U \subset G \backslash V$ isomorphic to \mathbb{G}_{a} that does not commute with V. Note that such U exists as G is non-commutative. Moreover, we claim that U normalizes V. Indded, $[U, V] \subset\left[G, G_{n-2}\right]=G_{n-1}$ which means that $u v u^{-1} v^{-1} \in G_{n-1}$ for any $u \in U, v \in V$. Hence, $u v u^{-1} \in G_{n-1} v \subset V$ which proves the claim.

Hence, $\overline{\varphi(U)}^{\circ}, \overline{\varphi(V)}^{\circ} \subset \operatorname{Aut}(X)$ are closed connected commutative subgroups. Since $\varphi(U)$ normalizes $\varphi(V), \varphi(U)$ normalizes $\overline{\varphi(V)} \subset \operatorname{Aut}(X)$ and hence $\overline{\varphi(U)}{ }^{\circ}$ normalizes $\overline{\varphi(V)}^{\circ}$. By [2, Theorem B] (see also [14, Corollary 3.2]) $\overline{\varphi(U)}^{\circ}, \overline{\varphi(V)}^{\circ} \subset \operatorname{Aut}(X)$ are unions of algebraic subgroups and hence $\overline{\varphi(U)}^{\circ} \ltimes \overline{\varphi(V)}^{\circ}$ is a union of algebraic subgroups. Note that $\overline{\varphi(U)}^{\circ}$ and $\overline{\varphi(V)}^{\circ}$ do not commute since otherwise the subgroups $\varphi^{-1}\left(\overline{\varphi(U)}^{\circ}\right)$ and $\varphi^{-1}\left(\overline{\varphi(V)}^{\circ}\right)$ of G would commute which is not the case as $\varphi^{-1}\left(\overline{\varphi(U)}^{\circ}\right) \cap U \subset U$ is a dense subgroup and analogously $\varphi^{-1}\left(\overline{\varphi(U)}^{\circ}\right) \cap U \subset U$ is a dense subgroup. Therefore, there are non-commuting algebraic subgroups in $\operatorname{Aut}(X)$.

We have two possibilities, $\operatorname{Aut}(X)$ does not contain a copy of \mathbb{G}_{m} or $\operatorname{Aut}(X)$ contains a copy of \mathbb{G}_{m}. Assume first that $\operatorname{Aut}(X)$ does not contain a copy of \mathbb{G}_{m}, then the semidirect product $\overline{\varphi(U)}{ }^{\circ} \ltimes \overline{\varphi(V)}^{\circ}$ is the union of unipotent subgroups and in particular it contains a unipotent subgroup W that acts on X with a two-dimensional orbit O that is isomorphic to \mathbb{A}^{2}, see [5, Theorem 11.1.1]. Pick subgroups $\tilde{U} \subset W$ and $\tilde{V} \subset W$ isomorphic to \mathbb{G}_{a} that generate the algebraic subgroup that acts with a two-dimensional orbit $O \simeq \mathbb{A}^{2}$. Take the maximal commutative subgroups H_{1} and H_{2} of $\operatorname{Aut}(X)$ that contain $\mathcal{O}(X)^{\tilde{U}} \cdot \tilde{U}$ and $\mathcal{O}(X)^{\tilde{V}} \cdot \tilde{V} \subset \operatorname{Aut}(X)$ respectively. Therefore, $\varphi^{-1}\left(H_{1}\right), \varphi^{-1}\left(H_{2}\right) \subset G$ are closed subgroups. Hence, the subgroup $H \subset G$ generated by $\varphi^{-1}\left(H_{1}\right)$ and $\varphi^{-1}\left(H_{2}\right)$ can be presented as a finite product of subgroups $\varphi^{-1}\left(H_{1}\right)$ and $\varphi^{-1}\left(H_{2}\right)$. On the other hand, the subgroup of $\operatorname{Aut}(X)$ generated by H_{1} and H_{2} cannot be presented as a finite product of subgroups H_{1} and H_{2}. Indeed, by Lemma 4.1 (1) the restriction of H_{1} to $O \simeq \mathbb{A}^{2}$ is the subgroup of $\operatorname{Aut}\left(O \simeq \mathbb{A}^{2}\right)$ generated by all one-dimensional unipotent subgroups that have the same generic orbits as $\left.\tilde{U}\right|_{O}$. Analogous situation we have with H_{2}. Now by Lemma 4.1 (2), the subgroup $H=\left\langle H_{1}, H_{2}\right\rangle \subset \operatorname{Aut}(X)$ restricted to $O \simeq \mathbb{A}^{2}$ cannot be presented as a finite product of H_{1} and H_{2} restricted to O. We arrive to the contradiction and finish the proof.

We are left with the case when $\operatorname{Aut}(X)$ contains a subgroup $T \simeq \mathbb{G}_{m}$. Since $\operatorname{Aut}_{\text {alg }}(X)$ is not commutative, by [13, Theorem 1.3] there exists a copy of \mathbb{G}_{a} in $\operatorname{Aut}(X)$. Now, by Lemma 3.1 there is root subgroup $U \subset \operatorname{Aut}(X)$ with respect to T. By Theorem 1.1 we can assume that $\mathcal{O}(X)^{T}=\mathcal{O}(X)^{U}$. Moreover, the maximal commutative subgroup that contains T does not contain any algebraic subgroup different from T. Now, $\varphi^{-1}(T) \subset G$ acts on $\varphi^{-1}\left(\operatorname{Cent}_{\text {Aut }(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right) \subset G$ by conjugations. By Lemma $5 \operatorname{Cent}_{\text {Aut }(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)$ coincides with its centalizer. Hence, $\varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right) \subset G$ also coincides with its centralizer and does not contain elements of finite order. Therefore, $\varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right) \subset G$ is a closed unipotent subgroup. Moreover, $\overline{\varphi^{-1}(T)} \subset G$ is the closed commutative algebraic subgroup that contains infinitely many elements of finite order which implies that ${\overline{\varphi^{-1}(T)}}^{\circ}=D \times V$, where $D \subset G$ is a torus of positive diemnsion and $V \subset G$ is a unipotent commutative subgroup.

Claim 3. The group $\varphi(D \times V)$ is a subgroup of $\varphi(T)$.
Indeed, $D \times V \subset \overline{\varphi^{-1}(T)}$ is a finite index subgroup. Hence, $\varphi(D \times V) \cap T \subset T$ is a finite index subgroup. Moreover, each element of $D \times V$ is divisible as $D \times V$ is the algebraic group. This implies that each element of $\varphi(D \times V)$ is divisible in $\varphi(D \times V)$. Consequently, each element of the intersection $T \cap \varphi(D \times V)$ is divisible and so $T \cap \varphi(D \times V)$ is a finite index subgroup of T that consists of divisible elements of T. Therefore, $T \cap \varphi(D \times V)=T$.
Claim 4. The unipotent subgroup $V \subset \varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right) \subset G$ is trivial.
Indeed, by Lie-Kolchin Theorem [7, §17.6] the unipotent group V acts on a unipotent subgroup $\varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right) \subset G$ with a fixed point which is not possible as $\varphi(V) \subset T$, and T acts with a finite kernel on any element of

$$
\left\{f \cdot u \in \operatorname{Aut}(X) \mid f \in Q\left(\mathcal{O}(X)^{U}\right), u \in U\right\}
$$

This proves the claim.
The algebraic subtorus $D \subset G$ acts on a unipotent subgroup $\varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U}\right.\right.$. $U))$ and hence $\varphi^{-1}\left(\operatorname{Cent}_{\operatorname{Aut}(X)}\left(\mathcal{O}(X)^{U} \cdot U\right)\right)$ decomposes into a direct sum of finitely many one-dimensional D-invariant unipotent subgroups $V_{1}, \ldots, V_{k}, k \geq 1$. The subgroups

$$
\varphi\left(V_{i}\right) \subset\left\{f \cdot u \in \operatorname{Aut}(X) \mid f \in Q\left(\mathcal{O}(X)^{U}\right), u \in U\right\}
$$

are invariant under $\varphi(D)$-action and in particular because $T \subset \varphi(D), \varphi\left(V_{i}\right)$ are invariant under the action of T. Hence, $\varphi\left(V_{i}\right)=R_{i} \cdot U$, where $R_{i} \subset Q\left(\mathcal{O}(X)^{U}\right)$ is a vector subspace for each $i=1, \ldots, k$. Therefore, at least one R_{i} is infinite-dimensional vector subspace of $Q\left(\mathcal{O}(X)^{U}\right)$, say R_{1}. Since D acts on $V_{1} \backslash\{0\}$ transitively, $\varphi(D)$ acts on $\varphi\left(V_{1}\right) \backslash\{0\}$ transitively too. But since R_{1} is a infinite-dimensional vector space, there is no commutative subgroup of $\operatorname{GL}\left(R_{1}\right)$ that acts transitively on $R_{1} \backslash\{0\}$. We arrive to a contradiction which finishes the proof.

5. Proof of Theorem 1.3

We start this section with the next proposition.
Proposition 5.1. Assume \mathbb{K} is uncountable and X is a connected affine variety. Then $\operatorname{Aut}(X)$ is not isomorphic to the Cremona group $\operatorname{Bir}\left(\mathbb{A}^{n}\right)=\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ as an abstract group for any $n>0$.

Proof. The proof of this statement is similar to the proof of Theorem A in [2]. We give some details here for the convenience of the reader. Let

$$
\operatorname{Tr}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+c_{1}, \ldots, x_{n}+c_{n}\right) \mid c_{i} \in \mathbb{K}\right\} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{A}^{n}\right)
$$

be the subgroup of all translations and Tr_{i} be the subgroup of translations of the i-th coordinate:

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i}+c, \ldots, x_{n}\right) \tag{4}
\end{equation*}
$$

where c in \mathbb{K}. Let $\mathrm{T} \subset \mathrm{GL}_{n}(\mathbb{K}) \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be the diagonal group (viewed as a maximal torus) and let T_{i} be the subgroup of automorphisms

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, a x_{i}, \ldots, x_{n}\right) \tag{5}
\end{equation*}
$$

where $a \in \mathbb{K}^{*}$. A direct computation shows that Tr (resp. T) coincides with its centralizer in $\operatorname{Bir}\left(\mathbb{A}^{n}\right)=\operatorname{Bir}\left(\mathbb{P}^{n}\right)$. Assume towards a contradiction that there is an isomorphism $\varphi: \operatorname{Bir}\left(\mathbb{A}^{n}\right) \rightarrow \operatorname{Aut}(X)$ of abstract groups. Similarly as in [2, Lemma 5.2] the groups $\varphi(\operatorname{Tr})$, $\varphi\left(\operatorname{Tr}_{i}\right), \varphi(T)$ and $\varphi\left(T_{i}\right)$ are closed subgroups of $\operatorname{Aut}(X)$ for all $i=1, \ldots, n$. Now the proof of [2, Theorem A] implies that $X \simeq \mathbb{A}^{n}$ and $\varphi(T) \subset \operatorname{Aut}\left(X \simeq \mathbb{A}^{n}\right)$ is isomorphic to the n dimensional algebraic torus. Assume $U \subset \operatorname{PGL}_{n+1}(\mathbb{K}) \subset \operatorname{Bir}\left(\mathbb{A}^{n}\right)$ is a root subgroup with respect to T. This means that T acts on U with two orbits. Therefore, $\varphi(U) \subset \operatorname{Aut}(X)$ is a constructible subset which is a group. We conclude that $\varphi(U) \subset \operatorname{Aut}(X)$ is an algebraic subgroup. Moreover, since $\mathrm{PGL}_{n+1}(\mathbb{K})$ is generated by its finitely many root subgroups U with respect to $T, \varphi\left(\mathrm{PGL}_{n+1}(\mathbb{K})\right)$ is generated by finitely many algebraic subgroups $\varphi(U)$ which implies that $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{K})\right) \subset \operatorname{Aut}\left(X \simeq \mathbb{A}^{n}\right)$ is an algebraic subgroup. Further, $\varphi(T) \subset \varphi\left(\mathrm{PGL}_{n+1}(\mathbb{K})\right)$ is a maximal subtorus that is isomorphic to \mathbb{G}_{m}^{n} which means that $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{K})\right)$ is a simple algebraic group of rank n that is isomorphic to $\mathrm{PGL}_{n+1}(\mathbb{K})$ as an abstract group. We conclude that $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{K})\right)$ is isomorphic to $\mathrm{PGL}_{n+1}(\mathbb{K})$ as an algebraic group. But this is not possible since the algebraic group $\mathrm{PGL}_{n+1}(\mathbb{K})$ does not act regularly on \mathbb{A}^{n} as the only closed subgroup H of codimension $\leq n$ of $\mathrm{PGL}_{n+1}(\mathbb{K})$ is a maximal parabolic subgroup such that $\mathrm{PGL}_{n+1}(\mathbb{K}) / H \simeq \mathbb{P}^{n}$. We arrive to a contradiction with the isomorphism $X \simeq \mathbb{A}^{n}$. The proof follows.
Proof of Theorem 1.3. Let $H \subset \operatorname{Bir}(X)$ be a maximal algebraic subtorus. By 12, Theorem 1] X is birationally equivalent to $\mathbb{A}^{l} \times Z$, where H acts on \mathbb{A}^{l} with an open orbit and $Z \subset \mathbb{A}^{r}$ is an affine variety with a trivial action of H. By Proposition 5.1 we can assume that Z is positive dimensional. Assume there is an isomorphism $\varphi: \operatorname{Bir}(X)=\operatorname{Bir}\left(\mathbb{A}^{l} \times Z\right) \rightarrow \operatorname{Aut}(Y)$. Consider the maximal commutative subgroup G of $\operatorname{Bir}\left(\mathbb{A}^{l} \times Z\right)$ of the form

$$
\left\{\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right) \mapsto\left(f_{1}(z) x_{1}, \ldots, f_{l}(z) x_{l}, g_{1}(z), \ldots, g_{r}(z)\right) \mid f_{i}(z), g_{i}(z) \in \mathbb{K}(Z)\right\}
$$

that contains the commutative subgroup

$$
\left\{\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right) \mapsto\left(f_{1}(z) x_{1}, \ldots, f_{l}(z) x_{l}, z_{1}, \ldots, z_{r}\right) \mid f_{i}(z) \in \mathbb{K}(Z)\right\}
$$

where the map

$$
Z \rightarrow Z \quad\left(z_{1}, \ldots, z_{r}\right) \mapsto\left(g_{1}(z), \ldots, g_{r}(z)\right)
$$

is a birational transformation of Z.
Claim 5. The subgroup $G \subset \operatorname{Bir}\left(\mathbb{A}^{l} \times Z\right)$ coincides with its centralizer.
To prove this claim consider a birational transformation ϕ of $\mathbb{A}^{l} \times Z$ of the form

$$
\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right) \mapsto\left(F_{1}(x, z), \ldots, F_{l}(x, z), G_{1}(x, z), \ldots, G_{r}(x, z)\right)
$$

where $F_{i}(x, z), G_{i}(x, z) \in \mathbb{K}\left(\mathbb{A}^{l} \times Z\right), x=\left(x_{1}, \ldots, x_{l}\right), z=\left(z_{1}, \ldots, z_{r}\right)$ that commutes with each element from G. Hence, ϕ commutes with $T \subset G$, i.e., with all birational transformations of $\mathbb{A}^{l} \times Z$ of the form

$$
\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right) \mapsto\left(t_{1} x_{1}, \ldots, t_{l} x_{l}, z_{1}, \ldots, z_{r}\right), \quad t_{1}, \ldots, t_{r} \in \mathbb{K}^{*}
$$

Direct computations show that

$$
t_{i} F_{i}\left(t_{1}^{-1} x_{1}, \ldots, t_{l}^{-1} x_{l}, z_{1}, \ldots, z_{r}\right)=F_{i}\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right)
$$

and

$$
G_{j}\left(t_{1}^{-1} x_{1}, \ldots, t_{l}^{-1} x_{l}, z_{1}, \ldots, z_{r}\right)=G_{j}\left(x_{1}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right)
$$

for all $t_{1}, \ldots, t_{r} \in \mathbb{K}^{*}, i=1 \ldots, l, j=1, \ldots, r$. Therefore, $F_{i}(x, z)=h_{i}(z) x_{i}$ for some $h_{i}(z) \in \mathbb{K}(Z)$ and $G_{j} \in \mathbb{K}(Z)$. This proves the claim.

By [10, Lemma 2.4] $\varphi(G) \subset \operatorname{Aut}(Y)$ is a closed ind-subgroup and by [2, Theorem B] (see also [14, Corollary 3.2]) the connected component $\varphi(G)^{\circ} \subset \operatorname{Aut}(Y)$ is the union of commutative algebraic subgroups. Since $\varphi(G)^{\circ} \subset \varphi(G)$ is a countable index subgroup, there is an element $g=\left(f_{1}(z) x_{1}, x_{2}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right) \in G$ with non-constant f_{1} such that $\varphi(g)$ belongs to $\varphi(G)^{\circ}$. Since $\varphi(G)^{\circ}$ is the union of connected algebraic groups, $\varphi(g)$ belongs to a connected algebraic subgroup of $\varphi(G)^{\circ}$ and hence there exists $k>0$ such that $\varphi(g)^{k}$ is a divisible element (see Section 2.4). The element g^{k} again has a form $\left(\tilde{f}_{1}(z) x_{1}, x_{2}, \ldots, x_{l}, z_{1}, \ldots, z_{r}\right)$ with a non-constant $\tilde{f}_{1}=\frac{r_{1}}{r_{2}}$, where $r_{1}, r_{2} \in \mathcal{O}(Z)$. Moreover, $g^{k} \in G$ is not divisible. More precisely, without loss of generality we can assume that r_{1} is non-constant and hence, there is no $h \in G$ such that $h^{\operatorname{deg} r_{1}+1}=g^{k}$. Indeed, otherwise there would exist a rational function $s \in \mathbb{K}(Z)$ such that $s^{\operatorname{deg} r_{1}+1}=\tilde{f}_{1}=\frac{r_{1}}{r_{2}}$ which is not the case. We get the contradiction which proves the theorem.

References

[1] J. Blanc, and A. Dubouloz, Affine surfaces with a huge group of automorphisms, Int. Math. Res. Not., 2015, Iss. 2, pp 422-459.
[2] S. Cantat, A. Regeta, and J. Xie, Families of commuting automorphisms, and a characterization of the affine space, arXiv:1912.01567 to appear in Amer. J. Math.
[3] Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group, arXiv:1701.00275.
[4] H. Flenner, M. Zaidenberg, On the uniqueness of \mathbb{C}^{*}-actions on affine surfaces, Affine Algebraic Geometry, 97-111, Contemporary Mathematics 369, Amer. Math. Soc. Providence, R.I., 2005.
[5] J.-P. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties, arXiv:1809.04175.
[6] J.-P. Furter, S. Lamy, Normal subgroup generated by a plane polynomial automorphism, Transf. Groups 15, no 3 (2010), 577-610.
[7] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, Graduate Texts in Mathematics, No. 21.
[8] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
[9] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41.
[10] A. Liendo, A. Regeta and C. Urech, Characterization of affine surfaces with a torus action by their automorphism groups, arXiv:1805.03991, to appear in Ann. Sc. Norm. Super. Pisa, doi:10.2422/20362145.201905_009.
[11] Z. S. Marciniak, A Note on Free Products of Linear Groups, Proc. of the Amer. Math. Soc. Vol. 94, No. 1 (1985), pp. 46-48.
[12] H. Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 34 (1963), 151-155.
[13] A. Perepechko and A. Regeta, When is the automorphism group of an affine variety nested?, to appear in Transform. Groups., doi.org/10.1007/s00031-022-09711-1
[14] A. Regeta and I. van Santen, Characterizing Affine Toric Varieties via the Automorphism Group, arXiv:2112.04784
[15] A. Regeta and I. van Santen, Characterizing smooth spherical varieties via the automorphism group, in preparation.
[16] J.P. Serre, Trees, Springer, Berlin - Heidelberg - New York, 1980.
[17] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), no. 1-2, 208-212.

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany
Email address: andriyregeta@gmail.com

