BRACKET WIDTH OF THE LIE ALGEBRA OF VECTOR FIELDS ON A SMOOTH AFFINE CURVE

IEVGEN MAKEDONSKYI AND ANDRIY REGETA

Abstract

We prove that the bracket width of the simple Lie algebra of vector fields $\operatorname{Vec}(C)$ of a smooth irreducible affine curve C with a trivial tangent sheaf is at most three. In addition, if C is a plane curve, the bracket width of $\operatorname{Vec}(C)$ is at most two and if moreover C has a unique place at infinity, the bracket width of $\operatorname{Vec}(C)$ is exactly two. We also show that in case C is rational, the width of $\operatorname{Vec}(C)$ equals one.

1. Introduction

Given a Lie algebra L over an infinite field \mathbb{k}, we define its bracket width as the supremum of lengths $\ell(x)$, where x is runs over the derived algebra $[L, L]$ and $\ell(x)$ is defined as the smallest number n of Lie brackets $\left[y_{i}, z_{i}\right]$ needed to represent x in the form

$$
\sum_{i=1}^{n}\left[y_{i}, z_{i}\right] .
$$

The bracket width applies in studying different aspects of Lie algebras, see [Rom16]. In particular, in [Rom16] the author provides many examples of Lie algebras with the bracket width strictly bigger than one. However, the first example of a simple Lie algebra with the bracket width strictly bigger than one was found only very recently in [DKR21, Theorem A] among Lie algebras of vector fields of smooth affine curves which are simple by [Jor86] and [Sie96, Proposition 1]. In the current note we provide an upper bound on the bracket width of a Lie algebra of vector fields on an irreducible smooth affine curve C with certain properties. Our first main result is the following statement which partially answers [DKR21, Question 2].

Theorem A. Let C be an irreducible smooth affine curve with trivial tangent sheaf. Then the bracket width of the Lie algebra $\operatorname{Vec}(C)$ is smaller than or equal to three. In addition, if C is a plane curve, the bracket width of $\operatorname{Vec}(C)$ is smaller than or equal to two.

The upper bound for the bracket width given in Theorem A is, in particular, of interest since it allows us to compute the bracket width of $\operatorname{Vec}(C)$ for a certain family of smooth plane affine curves.

Corollary 1. Let C be an irreducible non-rational smooth plane affine curve with a unique place at infinity. Then the width of the simple Lie algebra $\operatorname{Vec}(C)$ equals two.

There are many examples of affine curves with only one place at infinity (see Definition 1), and they were studied in many different contexts, see, e.g., a paper of Kollár [Kol20] and the references therein. A simple class of examples is given by affine hyperelliptic plane curves

[^0]$C \subset \mathbb{A}^{2}$ defined by equations $y^{2}=h(x)$, where $h(x)$ is a monic polynomial of odd degree strictly greater than one which has only simple roots ([DKR21, Example 2]).

We believe that the assumption on the curve C in Corollary 1 can be lightened and we have the following conjecture.

Conjecture 1. Assume C is a non-rational affine smooth plane curve. Then the bracket width of $\operatorname{Vec}(C)$ is exactly two.

Assume f is a regular function on C. We define a principal open subset $C_{f} \subset C$ as

$$
\{x \in C \mid f(x) \neq 0\} \subset C
$$

Note that C_{f} is a smooth affine curve itself.
Theorem B. Let C be an irreducible smooth affine curve and C_{f} be its principal open subset. Then the bracket width of $\operatorname{Vec}\left(C_{f}\right)$ is smaller than or equal to the bracket width of $\operatorname{Vec}(C)$.

We do not know an example of a smooth affine curve C with a principal open subset $U \subset C$ such that the width of $\operatorname{Vec}(U)$ is strictly smaller than $\operatorname{Vec}(C)$.

As a consequence of Theorem B we have the following statement that disproves [DKR21, Conjecture 1].

Corollary 2. If \mathbb{k} is algebraically closed, the bracket width of the Lie algebra $\operatorname{Vec}(C)$ of a rational smooth affine curve C is one.

2. Proof of Theorem A

Proof of Theorem A. Denote by $\mathcal{O}(C)$ the ring of regular functions on C. Since by hypothesis the tangent sheaf of C is trivial, we have $\operatorname{Vec}(C)=\mathcal{O}(C) \cdot \tau$ for a certain nowhere vanishing global vector field $\tau \in \operatorname{Vec}(C)$, unique up to multiplication by a nonzero constant. It is well-known that every smooth affine variety of dimension d can be embedded into $\mathbb{A}^{2 d+1}$ and that the bound $2 d+1$ is optimal ([Sr91, Corollary 1]). In particular, a smooth affine curve can be embedded into \mathbb{A}^{3} and this bound is sharp. Hence, $\mathcal{O}(C) \simeq \mathbb{k}[x, y, z] / I$, where $I \subset \mathbb{k}[x, y, z]$ is some ideal and we have the natural surjections

$$
\pi: \mathbb{k}[x, y, z] \rightarrow \mathbb{k}[x, y, z] / I
$$

and

$$
\pi_{*}:\left\{\nu \in \operatorname{Der} \mathbb{k}[x, y, z]=\operatorname{Vec}\left(\mathbb{A}^{3}\right) \mid \nu(I) \subset I\right\} \rightarrow \operatorname{Vec}(C)
$$

Note that $\{\nu \in \operatorname{Der} \mathbb{k}[x, y, z] \mid \nu(I) \subset I\} \subset \operatorname{Der} \mathbb{k}[x, y, z]$ is a Lie subalgebra and π_{*} is a homomorphism of Lie algebras. Then τ is the image of a derivation $\tilde{\tau}=\tilde{P} \frac{\partial}{\partial x}+\tilde{Q} \frac{\partial}{\partial y}+\tilde{R} \frac{\partial}{\partial z}$ that preserves the ideal I. Further, define $P, Q, R \in \mathcal{O}(C), P=\pi(\tilde{P}), Q=\pi(\tilde{Q}), R=\pi(\tilde{R})$.

Claim 1.

$$
\{[\tilde{\tau}, \tilde{f} \tilde{\tau}]+[y \tilde{\tau}, \tilde{g} \tilde{\tau}]+[z \tilde{\tau}, \tilde{h} \tilde{\tau}] \mid \tilde{f}, \tilde{g}, \tilde{h} \in \mathbb{k}[x, y, z]\}=(\tilde{P}, \tilde{Q}, \tilde{R}) \tau
$$

where $(\tilde{P}, \tilde{Q}, \tilde{R})$ denotes the ideal of $\mathbb{k}[x, y, z]$ generated by \tilde{P}, \tilde{Q} and \tilde{R}.

Indeed,

$$
\begin{gather*}
{[\tilde{\tau}, \tilde{f} \tilde{\tau}]+[y \tilde{\tau}, \tilde{g} \tilde{\tau}]+[z \tilde{\tau}, \tilde{h} \tilde{\tau}]=\left(\tilde{P} \tilde{f}_{x}^{\prime}+\tilde{Q} \tilde{f}_{y}^{\prime}+\tilde{R} \tilde{f}_{z}^{\prime}+\right.} \\
\left.y\left(\tilde{P} \tilde{g}_{x}^{\prime}+\tilde{Q} \tilde{g}_{y}^{\prime}+\tilde{R} \tilde{g}_{z}^{\prime}\right)-\tilde{g} \tilde{Q}+z\left(\tilde{P} \tilde{h}_{x}^{\prime}+\tilde{Q} \tilde{h}_{y}^{\prime}+\tilde{R} \tilde{h}_{z}^{\prime}\right)-\tilde{h} \tilde{R}\right) \tilde{\tau} \tag{1}
\end{gather*}
$$

which equals

$$
\begin{align*}
& \left(\tilde{P}\left(\tilde{f}_{x}^{\prime}+y \tilde{g}_{x}^{\prime}+z \tilde{h}_{x}^{\prime}\right)+\tilde{Q}\left(\tilde{f}_{y}^{\prime}+y \tilde{g}_{y}^{\prime}+z \tilde{h}_{y}^{\prime}-\tilde{g}\right)+\tilde{R}\left(\tilde{f}_{z}^{\prime}+y \tilde{g}_{z}^{\prime}+z \tilde{h}_{z}^{\prime}-\tilde{h}\right)\right) \tilde{\tau} \tag{2}\\
& \quad=\left(\tilde{P}(\tilde{f}+y \tilde{g}+z \tilde{h})_{x}^{\prime}+\tilde{Q}\left((\tilde{f}+y \tilde{g}+z \tilde{h})_{y}^{\prime}-2 \tilde{g}\right)+\tilde{R}\left((\tilde{f}+y \tilde{g}+z \tilde{h})_{z}^{\prime}-2 \tilde{h}\right)\right) \tilde{\tau}
\end{align*}
$$

Define $\tilde{r}=\tilde{f}+y \tilde{g}+z \tilde{h} \in \mathcal{O}(C)$. Now, the expression (2) can be written as

$$
\left(\tilde{P} \tilde{r}_{x}^{\prime}+\tilde{Q}\left(\tilde{r}_{y}^{\prime}-2 \tilde{g}\right)+\tilde{R}\left(\tilde{r}_{z}^{\prime}-2 \tilde{h}\right)\right) \tilde{\tau}
$$

For any $F, G, H \in \mathbb{k}[x, y, z]$ there exist $\tilde{r}, \tilde{g}, \tilde{h}$ such that $F=\tilde{r}_{x}^{\prime}, G=\tilde{r}_{y}^{\prime}-2 \tilde{g}$ and $H=\tilde{r}_{z}^{\prime}-2 \tilde{h}$. Hence,

$$
\begin{aligned}
& \left\{\left(\tilde{P}_{x}^{\prime}+\tilde{Q}\left(\tilde{r}_{y}^{\prime}-2 \tilde{g}\right)+\tilde{R}\left(\tilde{r}_{z}^{\prime}-2 \tilde{h}\right)\right) \tilde{\tau} \mid \tilde{r}, \tilde{g}, \tilde{h} \in \mathbb{k}[x, y, z]\right\}= \\
& \{(\tilde{P} F+\tilde{Q} G+\tilde{R} H) \tilde{\tau} \mid F, G, H \in \mathbb{k}[x, y, z]\}=(\tilde{P}, \tilde{Q}, \tilde{R}) \tilde{\tau} .
\end{aligned}
$$

This proves Claim 1.
We claim now that any vector field from $\operatorname{Vec}(C)$ can be written as the sum

$$
\begin{equation*}
[\tau, f \tau]+[\pi(y) \tau, g \tau]+[\pi(z) \tau, h \tau] \tag{3}
\end{equation*}
$$

for some regular functions $f, g, h \in \mathcal{O}(C)$. Indeed, $(\tilde{P}, \tilde{Q}, \tilde{R})$ is preserved by $\tilde{\tau}$, hence $\pi((\tilde{P}, \tilde{Q}, \tilde{R}))$ is preserved by τ. Whence $\pi((\tilde{P}, \tilde{Q}, \tilde{R})) \tau$ is the ideal in $\operatorname{Vec}(C)$. Therefore, because of simplicity of $\operatorname{Vec}(C)$ we have

$$
\pi_{*}((\tilde{P}, \tilde{Q}, \tilde{R}) \tau)=\operatorname{Vec}(C) \text { or equivalently } \pi((\tilde{P}, \tilde{Q}, \tilde{R}))=\mathcal{O}(C)
$$

Finally, by Claim 1 we have

$$
\left\{\pi_{*}([\tilde{\tau}, \tilde{f} \tilde{\tau}])+\pi_{*}([y \tilde{\tau}, \tilde{g} \tilde{\tau}])+\pi_{*}([z \tilde{\tau}, \tilde{h} \tilde{\tau}]) \mid \tilde{f}, \tilde{g}, \tilde{h} \in \mathbb{k}[x, y, z]\right\}=\pi_{*}((\tilde{P}, \tilde{Q}, \tilde{R}) \tau)=\operatorname{Vec}(C)
$$

Thus, the first statement of the theorem follows as π_{*} is a homomorphism of Lie algebras.
If C is a plane curve, then, similarly as above, $\operatorname{Vec}(C)=\mathcal{O}(C) \cdot \tau, \mathcal{O}(C) \simeq \mathbb{k}[x, y] / I$, where $I \subset \mathbb{k}[x, y]$ is an ideal and we have the natural surjections

$$
\pi: \mathbb{k}[x, y] \rightarrow \mathbb{k}[x, y] / I
$$

and

$$
\pi_{*}:\left\{\nu \in \operatorname{Der} \mathbb{k}[x, y]=\operatorname{Vec}\left(\mathbb{A}^{2}\right) \mid \nu(I) \subset I\right\} \rightarrow \operatorname{Vec}(C)
$$

Then τ is the image of a derivation $\tilde{\tau}=\tilde{P} \frac{\partial}{\partial x}+\tilde{Q} \frac{\partial}{\partial y}$ that preserves the ideal I. Further, define $P, Q \in \mathcal{O}(C), P=\pi(\tilde{P}), Q=\pi(\tilde{Q})$. The second statement of the theorem follows if we prove that any vector field of $\operatorname{Vec}(C)$ can be written as the sum

$$
\begin{equation*}
[\tau, f \tau]+[\pi(y) \tau, g \tau] \tag{4}
\end{equation*}
$$

for some regular functions $f, g \in \mathcal{O}(C)$. Similarly as above (4) follows from the next equality

$$
\{[\tilde{\tau}, \tilde{f} \tilde{\tau}]+[y \tilde{\tau}, \tilde{g} \tilde{\tau}] \mid \tilde{f}, \tilde{g}, \in \mathbb{k}[x, y]\}=(\tilde{P}, \tilde{Q}) \tilde{\tau}
$$

which is proved analogously as Claim 1.

Definition 1. An irreducible smooth affine curve C is said to have a unique place at infinity if it is equal to the complement of a single closed point in a smooth projective curve \bar{C}.

Proof of Corollary 1. By [DKR21, Theorem A] the bracket width of $\operatorname{Vec}(C)$ is strictly greater than one. Since C is a smooth irreducible plane affine curve, its tangent sheaf is trivial. Now by Theorem A the width of $\operatorname{Vec}(C)$ is less or equal than two which proves the claim.

3. Proof of Theorem B

Proof of Theorem B. Denote by $\mathcal{K}(C)$ the field of fractions of $\mathcal{O}(C)$. Then

$$
\begin{equation*}
\mathcal{K}(C) \otimes_{\mathcal{O}(C)} \operatorname{Der}(\mathcal{O}(C)) \simeq \operatorname{Der}(\mathcal{K}(C)) \tag{5}
\end{equation*}
$$

and the latter is known to be a free $\mathcal{K}(C)$-module of rank equal to $\operatorname{dim} C=1$. By (5) $\operatorname{Vec}(C)=\operatorname{Der} \mathcal{O}(C) \subset \operatorname{Der} \mathcal{K}(C)=\mathcal{K}(C) \tau$, where $\tau \in \operatorname{Vec}(C)$ is a global vector field. Hence, $\operatorname{Vec}(C)=\mathcal{R}(C) \cdot \tau$ for a certain $\mathcal{O}(C)$-module $\mathcal{R}(C) \subset \mathcal{K}(C)$. As a consequence, $\operatorname{Vec}\left(C_{f}\right)=\mathcal{R}(C)\left[f^{-1}\right] \tau$. Now, for $a, b \in \mathcal{R}(C), \frac{a}{f^{k}} \tau, \frac{b}{f^{k}} \tau \in \operatorname{Vec}\left(C_{f}\right)=\mathcal{R}(C)\left[f^{-1}\right] \tau$ and we have:

$$
\begin{equation*}
\left[\frac{a}{f^{k}} \tau, \frac{b}{f^{k}} \tau\right]=\left(\frac{a}{f^{k}} \tau\left(\frac{b}{f^{k}}\right)-\frac{b}{f^{k}} \tau\left(\frac{a}{f^{k}}\right)\right) \tau=\frac{1}{f^{2 k}}[a, b] \tau . \tag{6}
\end{equation*}
$$

Further, for any $h \in \mathcal{R}(C)\left[f^{-1}\right]$ there exists $g \in \mathcal{R}(C)$ such that

$$
h=\frac{g}{f^{2 k}}
$$

for some $k \in \mathbb{N}$. Assume that

$$
g \tau=\left[a_{1} \tau, b_{1} \tau\right]+\cdots+\left[a_{n} \tau, b_{n} \tau\right] .
$$

Then using (6) we have

$$
h \tau=\frac{g}{f^{2 k}} \tau=\left[\frac{a_{1}}{f^{k}} \tau, \frac{b_{1}}{f^{k}} \tau\right]+\cdots+\left[\frac{a_{n}}{f^{k}} \tau, \frac{b_{n}}{f^{k}} \tau\right] .
$$

This completes the proof.
Proof of Corollary 2. Let us recall that every rational smooth affine curve C is isomorphic to $\mathbb{A}^{1} \backslash \Lambda$, where Λ is a finite set of $r \geq 0$ points. In particular, it admits a closed embedding into \mathbb{A}^{2}. Indeed, C can also be seen as the complement in \mathbb{A}^{1} of a finite number (possibly zero) of points and we can consider the closed embedding $\mu: C \rightarrow \mathbb{A}^{2}$ given by $x \mapsto\left(x, \frac{1}{f(x)}\right)$, where $f \in \mathbb{k}[x]$ is a polynomial whose roots are exactly the removed points. Note that the image of μ is the curve of \mathbb{A}^{2} defined by the equation $f(x) y=1$.

By [DKR21, Proposition 1] the bracket width of $\operatorname{Vec}\left(\mathbb{A}^{1}\right)$ is one. By Theorem B the bracket width of $\operatorname{Vec}\left(\mathbb{A}^{1} \backslash \Lambda\right)$ is smaller than or equal to the bracket width of $\operatorname{Vec}\left(\mathbb{A}^{1}\right)$ which is one. The proof follows.

Acknowledgements. We thank Adrien Dubouloz and Boris Kunyavskii for useful discussions.

References

[DKR21] A. Dubouloz, B. Kunyavskii, A. Regeta, Bracket width of simple Lie algebras, Doc. Math. 26, 1601-1627 (2021).
[Jor86] D. A. Jordan, On the ideals of a Lie algebra of derivations, J. London Math. Soc. 33 (1986), 33-39.
[Kol20] J. Kollár, Pell surfaces, Acta Math. Hungar. 160 (2020), 478-518.
[Rom16] V. A. Roman'kov, The commutator width of some relatively free Lie algebras and nilpotent groups, Sibirsk. Mat. Zh. 57 (2016), 866-888; English transl. Sib. Math. J. 57 (2016), 679-695.
[Sie96] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0, Math. Ann. 305 (1996), 271-286.
[Sr91] V. Srinivas, On the embedding dimension of an affine variety, Math. Annalen 289 (1991) 125132.

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany
Email address: makedonskyi.e@gmail.com, andriyregeta@gmail.com

[^0]: 2020 Mathematics Subject Classification. 14H52, 17B66.

