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On the annihilators of rational functions in the Lie
algebra of derivations of k[x, y].

O. G. Iena ∗, A. P. Petravchuk †, A. O. Regeta ‡

Abstract

Let k be an algebraically closed field of zero characteristic. The Lie algebra
W2 = W2(k) of all k-derivations of the polynomial ring k[x, y] naturally acts on
the polynomial ring k[x, y] and also on the field of rational functions k(x, y). For a
fixed rational function u ∈ k(x, y)\k we consider the set AW2

(u) of all derivations
D ∈ W2 such that D(u) = 0. We prove that AW2

(u) is a free submodule of rank
1 of the k[x, y]-module W2. A description of the maximal abelian subalgebras as
well of the centralizers of elements in the Lie algebra AW2

(u) has been obtained.

Introduction

Let k be a field of characteristic zero. The Lie algebra Wn = Wn(k) of all k-derivations
of the polynomial ring k[x1, . . . , xn] was studied by many authors from different points
of view. Subalgebras of Wn that are free k[x1, . . . , xn]-submodules of maximal rank
in Wn, were studied by V. M. Buchstaber and D. V. Leykin in [2]. Using results of
D. Jordan [4] one can point out some classes of simple subalgebras of Wn that are
also k[x1, . . . , xn]-submodules of the k[x1, . . . , xn]-module Wn. In [7] the centralizers of
elements and the maximal abelian subalgebras of the algebra sa2(k) of all derivations
D ∈ W2 with zero divergence have been studied.

In this paper we study a class of subalgebras of the Lie algebra W2(k) over an
algebraically closed field of characteristic zero. This class is determined by the natural
action of the Lie algebra W2(k) on the field of rational functions k(x, y). Recall that
every derivation D ∈ W2(k) of the ring k[x, y] can be uniquely extended to a derivation
of the field k(x, y). It is natural to consider for a fixed rational function u ∈ k(x, y) \ k

the set AW2
(u) of all derivations D ∈ W2 such that D(u) = 0. This set will be called

the annihilator of u in W2(k). It is a Lie subalgebra of W2(k) and at the same time a
k[x, y]-submodule of the k[x, y]-module W2(k).

Using some results from [1], [5], [6], [8] we prove (Theorem 6) that for a rational
function u ∈ k(x, y) \ k its annihilator AW2

(u) is a free submodule of rank 1 in the
k[x, y]-module W2. We give also a free generator of this module. We describe the
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centralizers of elements and the maximal abelian subalgebras of the Lie algebra AW2
(u)

(Theorems 9 and 12). It turned out that the algebra AW2
(u) has completely different

structure in the cases when u is a polynomial and when u is a rational function of the
form u = p/q with algebraically independent polynomials p and q.

The notations used in the paper are standard. For a rational function u ∈ k(x, y) we
denote by ũ its generative rational function, i. e., a generator of the maximal subfield
in k(x, y) of transcendence degree 1 that contains u. Recall (see [8] for details) that ũ
is defined uniquely up to linear fractional transformations

αũ + β

γũ + δ
, αδ − βγ 6= 0.

Note also that if u is a polynomial there exists a polynomial generative function ũ ∈
k[x, y]. Recall that if a rational function or a polynomial is generative for itself, then
it is called closed.

A derivation D = P ∂
∂x

+Q ∂
∂y

will be called reduced if the polynomials P and Q are

coprime, i.e. gcd(P, Q) = 1. For an arbitrary polynomial u ∈ k[x, u] we denote by Du

the derivation of k(x, y) given by the rule Du(ϕ) = det J(u, ϕ) = ∂u
∂x

∂ϕ

∂y
− ∂u

∂y

∂ϕ

∂x
, i. e.,

Du = −
∂u

∂y

∂

∂x
+

∂u

∂x

∂

∂y
.

If u possesses a polynomial generative function, then one can choose ũ to be an
irreducible polynomial. If u does not have a polynomial generative function, then one
can choose ũ = p/q for some irreducible and algebraically independent polynomials p
and q (see, for example, [1] or [8], Corollary 1).

1 On the structure of the k[x, y]-module AW2(u).

Lemma 1. Let D = P ∂
∂x

+ Q ∂
∂y

∈ W2(k) be a reduced derivation. Then D has a
non-trivial kernel, i. e., KerD ) k, if and only if there exist non-zero polynomials
h, u ∈ k[x, y], u 6∈ k, such that hD = Du.

Proof. If hD = Du, then hD(u) = Du(u) = det J(u, u) = 0. As h is different from
zero, one concludes that u belongs to the kernel of D.

Let now D(u) = 0 for some non-constant polynomial u. The latter means P ∂u
∂x

+
Q∂u

∂y
= 0 and using that P and Q are coprime we obtain ∂u

∂x
= hQ and ∂u

∂y
= −hP for

some polynomial h. Thus hD = Du.

Lemma 2. Let u ∈ k(x, y) \ k and let ũ be its generative rational function. Then
AW2

(u) = AW2
(ũ).

Proof. Since ũ is a generative rational function for u, we obtain u = F (ũ) for some
non-constant rational function F (t) ∈ k(t). Then for every derivation D ∈ W2 one has

D(u) = D(F (ũ)) = F ′(ũ) · D(ũ)

and using that F ′(ũ) 6= 0 we conclude that D(u) = 0 if and only if D(ũ) = 0. This
implies AW2

(u) = AW2
(ũ) and completes the proof.
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Following [6] we assign to every irreducible polynomial p ∈ k[x, y] and every closed
rational function p/q with algebraically independent irreducible p and q reduced deriva-
tions δp and δp,q respectively. For an irreducible polynomial p ∈ k[x, y] the derivation
Dp may be written as Dp = −∂p

∂y
∂
∂x

+ ∂p

∂x
∂
∂y

. Let h = gcd( ∂p

∂x
, ∂p

∂y
), put P = −∂p

∂y
/h,

Q = ∂p

∂x
/h, and denote δp = P ∂

∂x
+ Q ∂

∂y
. Note that gcd(P, Q) = 1 and the derivation

δp is defined by the polynomial p uniquely up to multiplication by a non-zero element
from k.

Analogously for a rational function ϕ = p/q such that p and q are irreducible and
algebraically independent polynomials we denote by Dp,q the derivation defined from
the formula

Dp,q(f) · dx ∧ dy = (q dp − p dq) ∧ df.

One easily computes

(q dp − p dq) ∧ df = q · dp ∧ df − p · dq ∧ df =

=

[

q

(

∂p

∂x

∂f

∂y
−

∂p

∂y

∂f

∂x

)

− p

(

∂q

∂x

∂f

∂y
−

∂q

∂y

∂f

∂x

)]

dx ∧ dy,

hence we obtain the equality

Dp,q =

(

p
∂q

∂y
− q

∂p

∂y

)

∂

∂x
+

(

q
∂p

∂x
− p

∂q

∂x

)

∂

∂y
.

Let P0 = p ∂q

∂y
− q ∂p

∂y
, Q0 = q ∂p

∂x
− p ∂q

∂x
. Denote h = gcd(P0, Q0) and put

δp,q =
1

h
· Dp,q.

Note again that δp,q is defined uniquely up to multiplication by a non-zero constant.

Lemma 3. (1) Let p be an irreducible polynomial. Then Dp(F (p)) = 0 for every
rational function F ∈ k(t).
(2) Let p and q be irreducible algebraically independent polynomials. Then

Dp,q(p) = det(J(p, q)) · p, Dp,q(q) = det(J(p, q)) · q.

(3) For every homogeneous polynomial f(x, y) of degree m it holds

Dp,q(f(p, q)) = m det J(p, q)f(p, q).

Proof. (1) As Dp(p) = 0, we conclude that Dp(F (p)) = F ′(p)Dp(p) = 0.
(2) One computes

Dp,q(p) =

(

p
∂q

∂y
− q

∂p

∂y

)

∂p

∂x
+

(

q
∂p

∂x
− p

∂q

∂x

)

∂p

∂y
=

(

∂p

∂x

∂q

∂y
−

∂p

∂y

∂q

∂x

)

p = det(J(p, q)) · p.
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Analogous straightforward computation shows that Dp,q(q) = det(J(p, q)) · q.

(3) Let f(x, y) =
m
∑

i=0

aix
iym−i, ai ∈ k, be a homogeneous polynomial of degree m in

variables x and y. Then

Dp,q(f(p, q)) = Dp,q

(

m
∑

i=0

aip
iqm−i

)

=
m
∑

i=0

Dp,q(aip
iqm−i) =

m
∑

i=0

ai(ip
i−1Dp,q(p)qm−i + (m − i)qm−i−1Dp,q(q)p

i) =

m
∑

i=0

ai(ip
iqm−i + (m − i)qm−ipi) det(J(p, q)) = m det(J(p, q))f(p, q).

This proves the last part of the lemma.

For convenience let us introduce the following notations. Let ϕ ∈ k(x, y) \ k be a
non-constant rational function.

If ϕ has a polynomial generative functions, then there exists an irreducible genera-
tive polynomial p of ϕ. Put δϕ := δp.

If ϕ does not have any polynomial generative function, we find a generative rational
function of the form p/q with irreducible and algebraically independent polynomials
p, q ∈ k[x, y]. Put in this case δϕ := δp,q.

Lemma 4. Let D be a derivation of k[x, y] and p, q ∈ k[x, y] be two algebraically
independent polynomials such that D(p) = D(q) = 0. Then D = 0.

Proof. We can consider D as a derivation of the field k(x, y). Its kernel is an alge-
braically closed subfield of k(x, y) by Lemma 2.1 from [5]. Since p and q are algebraically
independent, one concludes that Ker D = k(x, y). Thus D = 0. This completes the
proof.

Lemma 5. Let D1, D2 ∈ W2 and let D1 be a reduced derivation. If uD1 + vD2 = 0 for
some polynomials u, v ∈ k[x, y], then v divides u and D2 = fD1 for f = u/v ∈ k[x, y].

Proof. Let D1 = P1
∂
∂x

+Q1
∂
∂y

, D2 = P2
∂
∂x

+Q2
∂
∂y

. Then uP1+vP2 = 0 and uQ1+vQ2 =
0. From these equalities it follows that v divides uP1 and uQ1. Since the polynomials
P1 and Q1 are coprime, u is divisible by v and we obtain P2 = fQ1, Q2 = fQ1 for
f = u/v. Hence D2 = fD1.

Theorem 6. For an arbitrary rational function ϕ ∈ k(x, y) \ k its annihilator AW2
(ϕ)

is a free submodule of rank 1 of the k[x, y]-module W2(k). As a free generator of the
submodule AW2

(ϕ) one can choose the derivation δϕ.

Proof. Let δϕ = P0
∂
∂x

+ Q0
∂
∂y

. Then the polynomials P0 and Q0 are coprime by con-

struction. Let us take an arbitrary derivation D = P ∂
∂x

+ Q ∂
∂y

from AW2
(ϕ). We shall

show that D = hδϕ for some polynomial h ∈ k[x, y].
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Consider the case when ϕ possesses a polynomial generative function p. Then by
Lemma 2 we get AW2

(ϕ) = AW2
(p). Therefore, D(p) = 0 and by Lemma 1 we conclude

that there exists a polynomial h0 such that ∂p

∂x
= h0Q and ∂p

∂y
= −h0P . This means that

Dp = h0D. By definition of δp there is a polynomial h1 ∈ k[x, y] such that Dp = h1δp

and therefore h0D − h1δp = 0. Since δp is a reduced derivation, we have by Lemma 5
that D = hδp for some polynomial h ∈ k[x, y].

Let us consider now the case when ϕ does not have any polynomial generative
function. In this case δϕ = δp,q for some irreducible and algebraically independent
polynomials p and q such that p/q is a generative rational function for ϕ. By Lemma 2
AW2

(ϕ) = AW2
(p/q). Since Dp,q(p/q) = 0, from the definition of δp,q it follows that

δp,q(p/q) = 0. Therefore, δp,q belongs to AW2
(p/q) = AW2

(ϕ).
Let D = P ∂

∂x
+Q ∂

∂y
be an arbitrary non-zero derivation from AW2

(ϕ). Since D(ϕ) =

0 implies D(p/q) = 0 and since D(p/q) = D(p)q−pD(q)
q2 , we conclude D(p)q − pD(q) = 0.

As the polynomials p and q are coprime, we obtain that D(p) = λp and D(q) = λq
for some λ ∈ k[x, y]. Denote for convenience µ = det J(p, q). Then by Lemma 3
hδp,q(p) = Dp,q(p) = µp and hδp,q(q) = Dp,q(q) = µq. As the polynomials p and q lie in
the kernel of the derivation λhδp,q − µD we have by Lemma 4 that λhδp,q − µD = 0.
The derivation δp,q is reduced by construction, so by Lemma 5 we obtain D = hδp,q for
some polynomial h. We proved that every derivation D ∈ AW2

(ϕ) is of the form hδϕ

for some polynomial h ∈ k[x, y]. This shows that AW2
(ϕ) is a free k[x, y]-module of

rank 1 with the generator δϕ.

2 On centralizers of elements and maximal abelian

subalgebras of the Lie algebra AW2(ϕ).

Definition 7. Let p(x, y) be an irreducible polynomial. A polynomial f(x, y) will be
called p-free if f(x, y) is not divisible by any polynomial in p(x, y) of positive degree.

It is clear that for every polynomial g(x, y) there exists a p-free polynomial ḡ(x, y)
such that g = ḡ · h(p) for some h ∈ k[t]. Note that ḡ is determined by the polynomial
g uniquely up to multiplication by a non-zero constant.

Lemma 8. Let u ∈ k(x, y) \ k be a non-constant rational function with a polynomial
generative function and p(x, y) be an irreducible generative polynomial for u(x, y). Then
CAW2

(u)(gδp) = CAW2
(u)(ḡδp) for any g ∈ k[x, y], where ḡ is the p-free polynomial

corresponding to g.

Proof. Let g = ḡh, where h ∈ k[p]. Take an arbitrary derivation D from CAW2
(u)(gδp).

By Theorem 6 D is of the form D = fδp for some polynomial f . Since [fδp, gδp] = 0,
we have

0 = [fδp, gδp] = [fδp, hḡδp] = fδp(h)ḡδp + h[fδp, ḡδp].

Since δp(h) = 0 and h 6= 0, we obtain from the last equalities that D = fδp ∈
CAW2

(u)(ḡδp). Conversely, let D ∈ CAW2
(u)(ḡδp). Using the same notations, write now

D = fδp for some f ∈ k[x, y]. Then [fδp, ḡδp] = 0. But then

[fδp, gδp] = [fδp, ḡhδp] = fδp(h)ḡδp + h[fδp, ḡδp] = 0.
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Therefore, the derivation fδp belongs to CAW2
(u)(gδp) if and only if it belongs to

CAW2
(u)(ḡδp). This proves the required statement.

Theorem 9. Let u ∈ k(x, y) \ k be a non-constant rational function that possesses a
polynomial generative function. Let p(x, y) be an irreducible generative polynomial for
u(x, y). Then

(1) the centralizer of an arbitrary element fδp from AW2
(u) in the Lie algebra

AW2
(u) equals f̄k[p]δp, where f̄ is a p-free polynomial corresponding to f ;

(2) maximal abelian subalgebras of AW2
(u) and only they are of the form f̄k[p]δp,

where f̄ is a p-free polynomial.

Proof. (1) Since by Lemma 8 CAW2
(u)(fδp) = CAW2

(u)(f̄ δp), we can assume without loss

of generality that f = f̄ . Take an arbitrary element gδp from CAW2
(u)(fδp). Denote

by ḡ a p-free polynomial corresponding to g. Then g = ḡ · h0, where h0 = h0(p) is a
polynomial in p. By Lemma 8 it holds [fδp, ḡδp] = 0 and therefore δp(f)ḡ−fδp(ḡ) = 0.
This relation yields the equality δp(ḡ/f) = 0. As Dp = λδp for some polynomial λ,
we have Dp(ḡ/f) = 0. Since Dp(ḡ/f) = det(J(p, ḡ/f)), the latter implies that the
rational functions p and ḡ/f are algebraically dependent (see for example [3], Ch. III,
§ 7, Th. III or [8], Lemma 1). As the polynomial p is closed (it is irreducible), the
function ḡ/f belongs to the field k(p). This means that the rational function ḡ/f can
be written in the form ḡ/f = u(p)/v(p) for some coprime polynomials u, v ∈ k[t]. From
the last equality it follows ḡv(p) = fu(p). As the polynomials f and ḡ are both p-free,
we have ḡ = cf for some c ∈ k× (a p-free polynomial corresponding to the polynomial
ḡv(p) = fu(p) is determined uniquely up to nonzero constant multiplier). Hence
g = h0ḡ = h0cf , where h0c ∈ k[p]. We proved the inclusion CAW2

(u)(fδp) ⊆ k[p] · fδp.
Since for every polynomial r ∈ k[t] we have

[r(p)fδp, fδp] = (r(p)fδp(f) − fδp(r(p)f))δp = (r(p)fδp(f) − fr(p)δp(f))δp = 0,

it holds also k[p] ·fδp ⊆ CAW2
(u)(fδp). We proved the equality k[p] ·fδp = CAW2

(u)(fδp)
for p-free f . This proves the first part of the theorem.

(2) Let M be a maximal abelian subalgebra in AW2
(u) and let fδp be an arbitrary

non-zero element of M . Then M ⊆ CAW2
(u)(fδp) and by the part (1) of this theorem

CAW2
(u)(fδp) = k[p] · f̄ δp. Since for arbitrary polynomials F, G ∈ k[t] it holds

[F (p)f̄ δp, G(p)f̄ δp] =(F (p)f̄δp(G(p)f̄) − G(p)f̄ δp(F (p)f̄)) · δp

=(F (p)G(p)f̄δp(f̄) − F (p)G(p)f̄δp(f̄)) · δp = 0,

one sees that k[p]·f̄ δp is an abelian algebra. The maximality of M implies M = k[p]·f̄ δp.
Conversely, the subalgebras of the form k[p] · f̄ δp are abelian Lie algebras for any p-
free polynomial f̄ . As every element commuting with f̄δp belongs by definition to
the centralizer CAW2

(u)(f̄ δp) = k[p]f̄ δ, one sees that all such subalgebras are maximal
abelian. This completes the proof of the theorem.

Definition 10. Let p and q be algebraically independent irreducible polynomials from
the ring k[x, y]. A polynomial f(x, y) ∈ k[x, y] will be called p-q-free if f is not divisible
by any homogeneous polynomial in p and q of positive degree.

6



It is clear that for every polynomial f there exists a p-q-free polynomial f̄ such that
f = f̄h for some homogeneous in p and q polynomial h. We denote by k[p, q]m the
vector space of all polynomials f(p, q), where f(x, y) is a homogeneous polynomial of
degree m.

Lemma 11. Let p, q ∈ k[x, y] be irreducible algebraically independent polynomials,
α1, α2, β1, β2 ∈ k. Then the polynomials α1p + β1q and α2p + β2q are either linearly
dependent (over k) or coprime. In the first case (α1 : β1) = (α2 : β2) as points in
P1(k). In the second case (α1 : β1) 6= (α2 : β2).

Proof. Since p and q are algebraically independent, they are also linearly independent.
If the polynomials r1 = α1p+β1q and r2 = α2p+β2q are linearly dependent then clearly
(α1 : β1) = (α2 : β2). Let now r1 and r2 be linearly independent. Then det

(

α1 β1

α2 β2

)

6= 0.
We can write down p = a1r1 + b1r2 and q = a2r1 + b2r2 for some a1, a2, b1, b2 ∈ k. It
is clear that any common divisor of r1 and r2 is a common divisor of p and q. Since
p and q are coprime, we conclude that r1 and r2 are coprime as well. In this case
(α1 : β1) 6= (α2 : β2).

Theorem 12. Let ϕ be a rational function that does not possess a polynomial generative
function. Let p and q be algebraically independent and irreducible polynomials such that
p/q is a generative rational function for ϕ. Then

(1) for an arbitrary element fδp,q ∈ AW2
(ϕ) its centralizer in AW2

(ϕ) coincides with
k[p, q]m · f̄δp,q, where f̄ is a p-q-free polynomial such that f = f̄ ·h for some polynomial
h homogeneous of degree m in p and q;

(2) every maximal abelian subalgebra from AW2
(ϕ) is of the form k[p, q]mf̄ δp,q for

some integer m and p-q-free polynomial f̄ . Every subalgebra of the type k[p, q]mf̄ δp,q

is maximal abelian. In particular all maximal abelian subalgebras of AW2
(ϕ) are finite

dimensional.

Proof. First of all note that one can choose for ϕ a generative rational function of
the form p/q with irreducible and algebraically independent polynomials p and q by
Corollary 1 from [8].

(1) By Lemma 2 AW2
(ϕ) = AW2

(p/q). By Theorem 6 every derivation from AW2
(ϕ)

may be written as fδp,q for some polynomial f ∈ k[x, y].
Take an arbitrary element gδp,q ∈ CAW2

(ϕ)(fδp,q). Then [gδp,q, fδp,q] = 0 and hence
gδp,q(f) − fδp,q(g) = 0. Therefore, δp,q(f/g) = 0 and also Dp,q(f/g) = 0 (recall that
Dp,q = λδp,q for some λ ∈ k[x, y]). Since Dp,q(f/g) = det(J(p/q, f/g)), the latter
implies that the rational functions p/q and f/g are algebraically dependent (see for
example [3], Ch.III, §7, Th. III or [8], Lemma 1). As p/q is a closed rational function,
we see that f/g ∈ k(p/q). Therefore,

f

g
=

F (p

q
)

G(p

q
)

for some coprime polynomials F, G ∈ k[t].
By our assumption the field k is algebraically closed, so we can decompose F and

G into linear factors, say

F (t) = c1(t − λ1) . . . (t − λk), G(t) = c2(t − µ1) . . . (t − µl), c1, c2, λi, µj ∈ k.
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Then
f

g
=

F (p

q
)

G(p

q
)

=
c1(p − λ1q) . . . (p − λkq)

c2(p − µ1q) . . . (p − µlq)
· ql−k

and hence

g =
c2(p − µ1q) . . . (p − µlq)

c1(p − λ1q) . . . (p − λkq)
· qk−l · f.

Write f = f̄ · h for a p-q-free polynomial f̄ and a polynomial h homogeneous of degree
m in p and q. It is known that the polynomial h can be decomposed into the product

h = (α1p − β1q) . . . (αmp − βmq).

with some αi, βj ∈ k. As f = f̄h, we can finally write

g =
c2(p − µ1q) . . . (p − µlq)(α1p − β1q) . . . (αmp − βmq)

c1(p − λ1q) . . . (p − λkq)
· qk−l · f̄ .

The polynomial f̄ is not divisible by homogeneous nonconstant polynomials in p and
q, so using Lemma 11 we conclude that the rational function

h1 =
c2(p − µ1q) . . . (p − µlq)(α1p − β1q) . . . (αmp − βmq)

c1(p − λ1q) . . . (p − λkq)
· qk−l

must be a polynomial, i. e., all factors of its denominator must occur as factors in the
numerator. It is obvious that h1 is a homogeneous polynomial of degree l + m + (k −
l) − k = m in p and q.

We proved that g = h1 · f̄ , hence gδp,q = h1 · f̄ δp,q ∈ k[p, q]m · f̄ δp,q. Therefore,
CAW2

(ϕ)(fδp,q) ⊆ k[p, q]m · f̄ δp,q.
For every polynomial h2 homogeneous of degree m in p and q applying Lemma 3,

3), one obtains

[h2f̄ δp,q, fδp,q] = [h2f̄ δp,q, hf̄δp,q] = (f̄ δp,q(h2)h − h2f̄ δp,q(h))f̄ δp,q =

= (m det J(p, q)h2h − h2m det J(p, q)h)f̄ 2δp,q = 0.

Therefore, k[p, q]m · f̄ δp,q ⊆ CAW2
(ϕ)(fδp,q) and we obtain the equality

CAW2
(ϕ)(fδp,q) = k[p, q]m · f̄ δp,q.

This proves the first part of the theorem.
(2) This part can be proved similarly to the part 2) of Theorem 9 by replacing the

set k[p] by k[p, q]m.

Acknowledgements

The research of the second author was partially supported by DFFD, Grant F28.1/026.

8



References

[1] A. Bodin, Reducibility of rational functions in several variables, Israel J. Math.,
164 (2008), 333–347.

[2] V. M. Buchstaber and D. V. Leykin, Polynomial Lie algebras, Functional Analysis
and its Applications, 36(4) (2002), 267–280.

[3] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. I. Reprint of
the 1947 original. Cambridge Mathematical Library. Cambridge University Press,
Cambridge, 1994.

[4] D. A. Jordan, On the ideals of a Lie algebra of derivations, J. London Math. Soc.,
33(1) (1986), 33–39.

[5] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1, . . . , xn], J.
Math. Kyoto Univ., 28(1) (1988), 111–118.

[6] J. M. Ollagnier, Algebraic closure of a rational function, Qualitative theory of dy-
namical systems, 5(2) (2004), 285–300.

[7] A. P. Petravchuk and O. G. Iena, On centralizers of elements in the Lie algebra of
the special Cremona group SA2(k), J. Lie Theory, 16(3) (2006), 561–567.

[8] A. P. Petravchuk and O. G. Iena, On closed rational functions in several variables,
Algebra Discrete Math., (2) (2007), 115–124.

9


