AUTOMORPHISM GROUPS OF AFFINE VARIETIES WITHOUT NON-ALGEBRAIC ELEMENTS

ALEXANDER PEREPECHKO^a AND ANDRIY REGETA

ABSTRACT. Given an affine algebraic variety X, we prove that if the neutral component $\operatorname{Aut}^{\circ}(X)$ of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result [5]. To prove it, we obtain the following fact. If a connected ind-group G contains a closed connected ind-subgroup $H \subset G$ with a geometrically smooth point, and for any $g \in G$ some power of g belongs to G, then G = G.

1. Introduction

In this note we work over an algebraically closed field of characteristic zero \mathbb{K} . We study the automorphism groups of affine varieties. It is well known that these groups can be larger than any algebraic group. For example, the automorphism group $\operatorname{Aut}(\mathbb{A}^n)$ of the affine n-space \mathbb{A}^n contains a copy of a polynomial ring in n-1 variables, hence it is infinite-dimensional for $n \geq 2$.

In [9] Shafarevich introduced the notion of the infinite-dimensional algebraic group, which is currently called the ind-group and showed that $\operatorname{Aut}(\mathbb{A}^n)$ has the structure of the ind-group. Later it was shown that $\operatorname{Aut}(X)$ has a natural structure of an ind-group for any affine variety X, see [4, Section 5] and also [6, Section 2].

We call an element g of the automorphism group $\operatorname{Aut}(X)$ algebraic if there is an algebraic subgroup G of the ind-group $\operatorname{Aut}(X)$ that contains g. We also denote by \mathbb{G}_a the additive group of the field and by $\mathcal{U}(X) \subset \operatorname{Aut}(X)$ the (possibly trivial) subgroup generated by all the \mathbb{G}_a -actions. It is usually called the *special automorphism group* and is also denoted by $\operatorname{SAut}(X)$.

In [5] we proved that for the subgroup $\operatorname{Aut}_{\operatorname{alg}}(X) \subset \operatorname{Aut}(X)$ generated by all connected algebraic subgroups the following conditions are equivalent:

- $\mathcal{U}(X)$ is abelian;
- all elements of $Aut_{alg}(X)$ are algebraic;
- the subgroup $\operatorname{Aut}_{\operatorname{alg}}(X) \subset \operatorname{Aut}(X)$ is a closed nested ind-subgroup, i.e., is a direct limit of algebraic subgroups;
- $\operatorname{Aut}_{\operatorname{alg}}(X) = \mathbb{T} \ltimes \mathcal{U}(X)$, where \mathbb{T} is a maximal subtorus of $\operatorname{Aut}(X)$, and $\mathcal{U}(X)$ is closed in $\operatorname{Aut}(X)$.

In this paper we prove that this result can be partially extended from $\operatorname{Aut}_{\operatorname{alg}}(X)$ to the connected component $\operatorname{Aut}^{\circ}(X)$. More precisely, we have the following result which is proved in Section 4.

Theorem 1.1. Let X be an affine variety. The following conditions are equivalent:

- (1) all elements of $Aut^{\circ}(X)$ are algebraic;
- (2) the subgroup $\operatorname{Aut}^{\circ}(X) \subset \operatorname{Aut}(X)$ is a closed nested ind-subgroup;

^aThe research of the first author was carried out at the HSE University at the expense of the Russian Science Foundation (project no. 21-71-00062).

(3) $\operatorname{Aut}^{\circ}(X) = \mathbb{T} \ltimes \mathcal{U}(X)$, where \mathbb{T} is a maximal subtorus of $\operatorname{Aut}(X)$, and $\mathcal{U}(X)$ is abelian and consists of all unipotent elements of $\operatorname{Aut}(X)$.

In [6] this theorem is proved for algebraic surfaces with a nontrivial group $\mathcal{U}(X)$.

The key observation in our proof is as follows. Under condition (1) for any element of $\operatorname{Aut}^{\circ}(X)$ some power of it belongs to $\mathbb{T} \ltimes \mathcal{U}(X)$, see Lemma 4.1. In Section 3 we prove that an ind-group G coincides with its ind-subgroup H if for any element of G some power of it lies in H, see Theorem 3.1. We also need a certain smoothness condition on H, which is fulfilled if H is nested.

In Section 5 we also state some observations about the group of automorphisms of a rigid affine variety, i.e., an affine variety that admits no \mathbb{G}_a -actions.

2. Preliminaries

2.1. **Ind-groups.** The notion of an ind-group goes back to Shafarevich who called these objects infinite dimensional groups (see [9]). We refer to [4] for basic notions in this context.

Definition 2.1. By an affine *ind-variety* we mean an injective limit $V = \varinjlim V_i$ of an ascending sequence $V_0 \hookrightarrow V_1 \hookrightarrow V_2 \hookrightarrow \ldots$ such that the following holds:

- $(1) V = \bigcup_{k \in \mathbb{N}} V_k;$
- (2) each V_k is an affine algebraic variety;
- (3) for all $k \in \mathbb{N}$ the embedding $V_k \hookrightarrow V_{k+1}$ is closed in the Zariski topology.

For simplicity we will call an affine ind-variety simply an ind-variety. An ind-variety V has a natural topology: a subset $S \subset V$ is called open (resp. closed) if $S_k := S \cap V_k \subset V_k$ is open (resp. closed) for all $k \in \mathbb{N}$. A closed subset $S \subset V$ has a natural structure of an ind-variety and is called an ind-subvariety.

The product of ind-varieties $X = \varinjlim X_i$ and $Y = \varinjlim Y_i$ is defined as $\varinjlim X_i \times Y_i$. A morphism between ind-varieties $V = \bigcup_k V_k$ and $W = \bigcup_m W_m$ is a map $\phi : V \to W$ such that for every $k \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that $\phi(V_k) \subset W_m$ and that the induced map $V_k \to W_m$ is a morphism of algebraic varieties. This allows us to give the following definition.

Definition 2.2. An ind-variety G is said to be an *ind-group* if the underlying set G is a group such that the map $G \times G \to G$, $(g,h) \mapsto gh^{-1}$, is a morphism.

A closed subgroup H of G is a subgroup that is also a closed subset. Then H is again an ind-group with respect to the induced ind-variety structure. A closed subgroup H of an ind-group $G = \lim_i G_i$ is called an algebraic subgroup if H is contained in some G_i .

The next result can be found in [4, Section 5].

Proposition 2.3. Let X be an affine variety. Then Aut(X) has the structure of an ind-group such that a regular action of an algebraic group G on X induces a homomorphism of ind-groups $G \to Aut(X)$.

Two ind-structures $V = \varinjlim V_i$ and $V = \varinjlim V_i'$ are called *equivalent*, if the identity map $\varinjlim V_i \to \varinjlim V_i'$ is an isomorphism of ind-varieties. One also calls $\varinjlim V_i'$ an *admissible* filtration of the ind-variety $V = \varinjlim V_i$.

Definition 2.4 ([4, Definition 1.9.4]). A point p in an ind-variety V is called *geometrically smooth*, if there exists an admissible filtration $V = \varinjlim V_i$ such that p is a smooth point of V_i for each i.

An element $g \in \text{Aut}(X)$ is called *algebraic* if there is an algebraic subgroup $G \subset \text{Aut}(X)$ such that $g \in G$. An ind-group $G = \varinjlim G_i$ is called *nested* if G_i is an algebraic group for $i = 1, 2, \ldots$

2.2. Lie algebras of ind-groups. For an ind-variety $V = \bigcup_{k \in \mathbb{N}} V_k$ we can define the tangent space in $x \in V$ in the obvious way: we have $x \in V_k$ for $k \ge k_0$, and $T_x V_k \subset T_x V_{k+1}$ for $k \ge k_0$, and then we define

$$T_xV := \bigcup_{k \ge k_0} T_xV_k,$$

which is a vector space of at most countable dimension.

For an ind-group G, the tangent space T_eG has a natural structure of a Lie algebra which is denoted by Lie G, see [7, Section 4] and [4, Section 2] for details.

2.3. \mathbb{G}_a -actions. Given an affine variety X, we denote by $\operatorname{Aut}_{\operatorname{alg}}(X) \subset \operatorname{Aut}(X)$ the subgroup generated by all connected algebraic subgroups of the automorphism group $\operatorname{Aut}(X)$.

An element $u \in \operatorname{Aut}(X)$ is called *unipotent* if u belongs to an algebraic subgroup of $\operatorname{Aut}(X)$ isomorphic to \mathbb{G}_a . We denote the automorphism subgroup of $\operatorname{Aut}(X)$ generated by all the unipotent elements by $\mathcal{U}(X)$.

3. Ind-subgroup with powers of elements

In this section we explore the situation when an ind-subgroup contains some power of any element of the ind-group and prove Theorem 3.1.

Theorem 3.1. Let G be a connected ind-group and $H \subset G$ be a closed connected ind-subgroup with a geometrically smooth point. Assume that for any $g \in G$ there exists $d \in \mathbb{N}$ such that $g^d \in H$. Then G = H.

By [4, Theorem 0.1.1] and [4, Remark 2.2.3] there exist ind-structures $G = \varinjlim G_i$ and $H = \varinjlim H_i$ such that each G_i and H_i is an irreducible subset containing the identity. Moreover, since there exists a geometrically smooth point $p \in H$, then every point in H is geometrically smooth, and we may assume that each H_i is smooth at the identity.

Remark 3.2. Any nested ind-group is geometrically smooth at each point. However, to our knowledge, this property is not proven for arbitrary ind-groups. For example, a stronger property of being *strongly smooth* does not hold for the ind-group $Aut(\mathbb{A}^2)$, see [4, Corollary 14.1.2]. More generally, this group does not admit a filtration by normal varieties.

Consider the multiplication map

$$\mu_d \colon G^d = \underbrace{G \times \cdots \times G}_{d \text{ times}} \to G, \ (g_1, \dots, g_d) \mapsto g_1 \cdots g_d.$$

Its differential is the linear map

$$d\mu_d$$
: $(\text{Lie }G)^d = \underbrace{\text{Lie }G \times \cdots \times \text{Lie }G}_{d \text{ times}} \to \text{Lie }G.$

We have the following statement.

Lemma 3.3. Given $(x_1, \ldots, x_d) \in (\text{Lie } G)^d$, the following holds:

$$d\mu_d((x_1, \dots, x_d)) = x_1 + \dots + x_d.$$

Proof. By linearity,

(1)
$$d\mu_d((x_1,\ldots,x_d)) = \sum_i d\mu_d((0,\ldots,0,x_i,0,\ldots,0)).$$

We claim that $d\mu_d((0,\ldots,0,x_i,0,\ldots,0))=x_i$. Indeed, let us denote

$$s_i : G \to \underbrace{G \times \cdots \times G}_{d \text{ times}}, \ g \mapsto (id, \dots, \underbrace{g}_{i\text{-th position}}, \dots, id).$$

The composition $\mu_d \circ s_i$ is the trivial automorphism of G. Hence,

(2)
$$d(\mu_d \circ s_i) \colon \operatorname{Lie} G \stackrel{\mathrm{d}s_i}{\to} \underbrace{\operatorname{Lie} G \oplus \cdots \oplus \operatorname{Lie} G} \stackrel{\mathrm{d}\mu_d}{\to} \operatorname{Lie} G$$

is the identity map, where the first map in (2) is given by the embedding into the *i*-th coordinate. Therefore, we conclude that $d\mu_d((0,\ldots,0,x_i,0,\ldots,0)) = x_i$. Now, from (1) it follows that

$$d\mu_d((x_1,\ldots,x_d)) = \sum_i x_i.$$

Definition 3.4. We denote $\phi_d \colon G \to G$, $g \mapsto g^d$. It is an endomorphism of an ind-variety.

Corollary 3.5. The differential $d\phi_d$: Lie $G \to \text{Lie } G$ satisfies

$$d\phi_d(x) = d \cdot x$$

for any $x \in \text{Lie } G$.

Proof. Consider an embedding

$$s: G \to \underbrace{G \times \cdots \times G}_{d \text{ times}}; \quad g \mapsto (g, \dots, g).$$

Its differential is the embedding

ds: Lie
$$G \to \underbrace{\text{Lie } G \oplus \cdots \oplus \text{Lie } G}_{\text{d times}}; x \mapsto (x, \dots, x).$$

Since $\phi_d = \mu_d \circ s$, by Lemma 3.3

(3)
$$d\phi_d(x) = d\mu_d((x, \dots, x)) = d \cdot x.$$

Definition 3.6. For each $d, k \in \mathbb{N}$ we denote

$$X_{d,k} = \phi_d^{-1}(H_k) = \{ g \in G \mid g^d \in H_k \} \subset G.$$

Lemma 3.7. (1) The subset $X_{d,k}$ is closed in G for any $d, k \in \mathbb{N}$.

(2) For any closed algebraic subset $A \subset G$ there exist $d, k \in \mathbb{N}$ such that $A \subset X_{d,k}$.

Proof. The map ϕ_d is a morphism of ind-varieties, so the first statement follows from $X_{d,k} = \phi_d^{-1}(H_k)$.

The increasing sequence of closed subsets

$$X_{1!,1} \subset X_{2!,2} \subset \ldots \subset X_{i!,i} \subset \ldots$$

exhausts G, hence $A \subset X_{i!,i}$ for some $i \in \mathbb{N}$. We may take d = i! and k = i to get the second assertion. See also [4, Theorem 1.3.3].

Proof of Theorem 3.1. Denote the restriction of $\phi_d \colon G \to G$, $g \mapsto g^d$, to $X_{d,k}$ by $\phi_{d,k}$. Then

$$\phi_{d,k} \colon X_{d,k} \to H_k, \ g \mapsto g^d.$$

Its differential map at the identity,

$$d(\phi_{d,k})_{id} \colon T_{id}X_{d,k} \to T_{id}H_k,$$

is given by $x \mapsto d \cdot x$ due to Corollary 3.5. This map has trivial kernel and is surjective due to $H_k \subset X_{d,k}$. So, dim $T_{\mathrm{id}}X_{d,k} = \dim T_{\mathrm{id}}H_k$.

Since H_k is smooth at the identity, $\dim T_{\mathrm{id}}H_k = \dim H_k$. Let Y be the union of irreducible components of $X_{d,k}$ containing the identity. From $H_k \subset Y$ and $\dim T_{\mathrm{id}}Y = \dim H_k$ we infer that $Y = H_k$. Thus, the set $X_{d,k}$ contains H_k as an irreducible component, and other components do not contain the identity.

By Lemma 3.7, for any $i \in \mathbb{N}$ there exist $d, k \in \mathbb{N}$ such that $G_i \subset X_{d,k}$. Since G_i is irreducible and contains the identity, G_i is a subset of the only irreducible component of $X_{d,k}$ which contains the identity, namely, H_k . We conclude that $G \subseteq H$.

4. Neutral component without non-algebraic elements

In this section we assume that $\operatorname{Aut}^{\circ}(X)$ consists of algebraic elements. By [5, Main Theorem], $\mathcal{U}(X)$ is an abelian unipotent ind-group (which is trivial, one-dimensional, or infinite-dimensional), and the subgroup $\operatorname{Aut}_{\operatorname{alg}}(X)$ generated by connected algebraic subgroups equals $\mathbb{T} \ltimes \mathcal{U}(X)$, where \mathbb{T} is a maximal algebraic torus.

Lemma 4.1. For any algebraic element $g \in \operatorname{Aut}^{\circ}(X)$ there exists $d \in \mathbb{N}$ such that $g^{d} \in \mathbb{T} \ltimes \mathcal{U}(X)$.

Proof. The Zariski closure of $\{g^n \mid n \in \mathbb{Z}\}$ is an abelian algebraic group, which we denote by G. The subgroup G° is of finite index in G, so we may denote $d = |G/G^{\circ}|$ and we have $g^d \in G^{\circ}$. Since G° is a connected algebraic group, $G^{\circ} \subset \mathbb{T} \ltimes \mathcal{U}(X)$. The claim follows.

Remark 4.2. By [2, Theorem 1.1], for any algebraic group G there is a finite subgroup $H \subset G$ such that $G = H \cdot G^{\circ}$. Thus, any algebraic element of $\operatorname{Aut}(X)$ is a product of an element of $\operatorname{Aut}_{\operatorname{alg}}(X)$ and a finite order one.

As we have mentioned above, $\mathcal{U}(X)$ is a direct limit of its unipotent algebraic subgroups, i.e., $\mathcal{U}(X) = \varinjlim \mathcal{U}(X)_k$, where each $\mathcal{U}(X)_k$ is a closed unipotent algebraic subgroup of $\mathcal{U}(X)$. We set $\overrightarrow{\mathcal{U}}(X)_k = \mathcal{U}(X)$ for each k if $\mathcal{U}(X)$ is itself an algebraic group.

Proof of Theorem 1.1. Assume that all elements of $\operatorname{Aut}^{\circ}(X)$ are algebraic. By [5, Theorem 1.3], $\operatorname{Aut}_{\operatorname{alg}}(X)$ equals $\mathbb{T} \ltimes \mathcal{U}(X)$. By Lemma 4.1, we may apply Theorem 3.1 to $G = \operatorname{Aut}^{\circ}(X)$ and $H = \mathbb{T} \ltimes \mathcal{U}(X)$ and conclude that $\operatorname{Aut}^{\circ}(X) = \mathbb{T} \ltimes \mathcal{U}(X)$. This proves the implication $(1) \Rightarrow (3)$. The implications $(3) \Rightarrow (2) \Rightarrow (1)$ are obvious.

Corollary 4.3. Let X be an affine algebraic variety without \mathbb{G}_a -actions such that $\operatorname{Aut}^{\circ}(X)$ consists of algebraic elements. Then $\operatorname{Aut}^{\circ}(X)$ is an algebraic torus of dimension at most $\dim X$.

Proof. In this case Lie Aut° $(X) = \mathfrak{t}$, so Aut°(X) is finite-dimensional. Then Aut°(X) is a connected algebraic group and is defined by Lie \mathbb{T} .

Remark 4.4. If X does not admit \mathbb{G}_a - and \mathbb{G}_m -actions, then Theorem 1.1 can be obtained from [1, Proposition 3.6]. Indeed, in this case all elements of $\operatorname{Aut}^{\circ}(X)$ are of finite order. Hence, for some $n \in \mathbb{N}$ the subset of elements of order at most n, which is a closed, contains the identity as a limit point.

5. The automorphism group of a rigid variety

In this section we do not assume that $\operatorname{Aut}^{\circ}(X)$ consists of algebraic elements. Assume that an affine variety X is rigid, i.e., admits no \mathbb{G}_a -actions. By [5, Main Theorem], all \mathbb{G}_m -actions on X commute, hence $\operatorname{Aut}_{\operatorname{alg}}(X) = \mathbb{T}$ is an algebraic torus.

Proposition 5.1. Each element of $Aut^{\circ}(X)$ commutes with \mathbb{T} .

Proof. The torus \mathbb{T} is a normal closed subgroup in $\operatorname{Aut}^{\circ}(X)$. Consider the action of $\operatorname{Aut}^{\circ}(X)$ on \mathbb{T} by conjugations. Since the group of automorphisms of the algebraic torus \mathbb{T} of dimension n seen as an algebraic group is isomorphic to $\operatorname{GL}(n,\mathbb{Z})$, we obtain the homomorphism $\operatorname{Aut}^{\circ}(X) \to \operatorname{GL}(n,\mathbb{Z})$. Since $\operatorname{GL}(n,\mathbb{Z})$ is discrete, the image of $\operatorname{Aut}^{\circ}(X)$ is trivial. The assertion follows.

Corollary 5.2. Each element of $\operatorname{Aut}^{\circ}(X)$ is contained in an abelian group $A \times \mathbb{T}$, where A is a cyclic group.

Remark 5.3. Any maximal abstract abelian subgroup G of $\operatorname{Aut}^{\circ}(X)$ is an at most countable extension of \mathbb{T} . Indeed, G coincides with its centralizer, hence is a closed ind-subgroup ([8, Lemma 2.4]). Further, G contains \mathbb{T} , and by [3, Theorem B] the connected component G° is algebraic. So, $G^{\circ} = \mathbb{T}$.

In particular, the only maximal connected abelian ind-subgroup of $\operatorname{Aut}^{\circ}(X)$ is \mathbb{T} .

Question 5.4. Given a rigid affine variety X, what can we say about the subset of algebraic elements of $\operatorname{Aut}^{\circ}(X)$?

References

- [1] H. Bergner, S. Zimmermann, Properties of the Cremona group endowed with the Euclidean topology, preprint, arXiv:2108.13096.
- [2] M.Brion, On extensions of algebraic groups with finite quotient, Pacific J. Math. (Robert Steinberg Memorial Issue) 279 (2015), 135-153.
- [3] S.Cantat, A.Regeta, and J.Xie, Families of commuting automorphisms, and a characterization of the affine space, to appear in Amer. J. Math, arXiv:1912.01567.
- [4] J.-P. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties, preprint, arXiv:1809.04175.
- [5] A.Perepechko, A. Regeta, When is the automorphism group of an affine variety nested?, to appear in Trans. Groups, arXiv:1903.07699
- [6] S. Kovalenko, A. Perepechko, and M. Zaidenberg, On automorphism groups of affine surfaces, in: Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics **75** (2017), 207–286.
- [7] S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002.
- [8] A. Liendo, A. Regeta, and C. Urech, *Characterisation of affine surfaces by their automorphism groups*, to appear in Ann. Sc. Norm. Super. di Pisa, arXiv:1805.03991, doi: 10.2422/2036-2145.201905_009.
- [9] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) **25** (1966), no. 1-2, 208–212.

KHARKEVICH INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, 19 BOLSHOY KARETNY PER., 127994 MOSCOW, RUSSIA

National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow 101000, Russia

 $Email\ address \hbox{: a@perep.ru}$

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany *Email address*: andriyregeta@gmail.com