
AUTOMORPHISM GROUPS OF AFFINE VARIETIES WITHOUT
NON-ALGEBRAIC ELEMENTS

ALEXANDER PEREPECHKOa AND ANDRIY REGETA

Abstract. Given an affine algebraic variety X, we prove that if the neutral component
Aut◦(X) of the automorphism group consists of algebraic elements, then it is nested,
i.e., is a direct limit of algebraic subgroups. This improves our earlier result [5]. To
prove it, we obtain the following fact. If a connected ind-group G contains a closed
connected ind-subgroup H ⊂ G with a geometrically smooth point, and for any g ∈ G
some power of g belongs to H, then G = H.

1. Introduction

In this note we work over an algebraically closed field of characteristic zero K. We
study the automorphism groups of affine varieties. It is well known that these groups can
be larger than any algebraic group. For example, the automorphism group Aut(An) of
the affine n-space An contains a copy of a polynomial ring in n− 1 variables, hence it is
infinite-dimensional for n ≥ 2.

In [9] Shafarevich introduced the notion of the infinite-dimensional algebraic group,
which is currently called the ind-group and showed that Aut(An) has the structure of the
ind-group. Later it was shown that Aut(X) has a natural structure of an ind-group for
any affine variety X, see [4, Section 5] and also [6, Section 2].

We call an element g of the automorphism group Aut(X) algebraic if there is an
algebraic subgroup G of the ind-group Aut(X) that contains g. We also denote by Ga

the additive group of the field and by U(X) ⊂ Aut(X) the (possibly trivial) subgroup
generated by all the Ga-actions. It is usually called the special automorphism group and
is also denoted by SAut(X).
In [5] we proved that for the subgroup Autalg(X) ⊂ Aut(X) generated by all connected

algebraic subgroups the following conditions are equivalent:

• U(X) is abelian;
• all elements of Autalg(X) are algebraic;
• the subgroup Autalg(X) ⊂ Aut(X) is a closed nested ind-subgroup, i.e., is a direct
limit of algebraic subgroups;

• Autalg(X) = T ⋉ U(X), where T is a maximal subtorus of Aut(X), and U(X) is
closed in Aut(X).

In this paper we prove that this result can be partially extended from Autalg(X) to
the connected component Aut◦(X). More precisely, we have the following result which
is proved in Section 4.

Theorem 1.1. Let X be an affine variety. The following conditions are equivalent:

(1) all elements of Aut◦(X) are algebraic;
(2) the subgroup Aut◦(X) ⊂ Aut(X) is a closed nested ind-subgroup;

aThe research of the first author was carried out at the HSE University at the expense of the Russian
Science Foundation (project no. 21-71-00062).
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(3) Aut◦(X) = T⋉U(X), where T is a maximal subtorus of Aut(X), and U(X) is abelian
and consists of all unipotent elements of Aut(X).

In [6] this theorem is proved for algebraic surfaces with a nontrivial group U(X).
The key observation in our proof is as follows. Under condition (1) for any element of

Aut◦(X) some power of it belongs to T ⋉ U(X), see Lemma 4.1. In Section 3 we prove
that an ind-group G coincides with its ind-subgroup H if for any element of G some
power of it lies in H, see Theorem 3.1. We also need a certain smoothness condition on
H, which is fulfilled if H is nested.
In Section 5 we also state some observations about the group of automorphisms of a

rigid affine variety, i.e., an affine variety that admits no Ga-actions.

2. Preliminaries

2.1. Ind-groups. The notion of an ind-group goes back to Shafarevich who called these
objects infinite dimensional groups (see [9]). We refer to [4] for basic notions in this
context.

Definition 2.1. By an affine ind-variety we mean an injective limit V = lim−→Vi of an
ascending sequence V0 ↪→ V1 ↪→ V2 ↪→ . . . such that the following holds:

(1) V =
⋃

k∈N Vk;
(2) each Vk is an affine algebraic variety;
(3) for all k ∈ N the embedding Vk ↪→ Vk+1 is closed in the Zariski topology.

For simplicity we will call an affine ind-variety simply an ind-variety. An ind-variety V
has a natural topology : a subset S ⊂ V is called open (resp. closed) if Sk := S ∩ Vk ⊂ Vk

is open (resp. closed) for all k ∈ N. A closed subset S ⊂ V has a natural structure of an
ind-variety and is called an ind-subvariety.

The product of ind-varieties X = lim−→Xi and Y = lim−→Yi is defined as lim−→Xi × Yi. A
morphism between ind-varieties V =

⋃
k Vk and W =

⋃
m Wm is a map ϕ : V → W such

that for every k ∈ N there is an m ∈ N such that ϕ(Vk) ⊂ Wm and that the induced
map Vk → Wm is a morphism of algebraic varieties. This allows us to give the following
definition.

Definition 2.2. An ind-variety G is said to be an ind-group if the underlying set G is a
group such that the map G×G → G, (g, h) 7→ gh−1, is a morphism.

A closed subgroup H of G is a subgroup that is also a closed subset. Then H is again
an ind-group with respect to the induced ind-variety structure. A closed subgroup H of
an ind-group G = lim−→Gi is called an algebraic subgroup if H is contained in some Gi.

The next result can be found in [4, Section 5].

Proposition 2.3. Let X be an affine variety. Then Aut(X) has the structure of an ind-
group such that a regular action of an algebraic group G on X induces a homomorphism
of ind-groups G → Aut(X).

Two ind-structures V = lim−→Vi and V = lim−→V ′
i are called equivalent, if the identity map

lim−→Vi → lim−→V ′
i is an isomorphism of ind-varieties. One also calls lim−→V ′

i an admissible
filtration of the ind-variety V = lim−→Vi.

Definition 2.4 ([4, Definition 1.9.4]). A point p in an ind-variety V is called geometrically
smooth, if there exists an admissible filtration V = lim−→Vi such that p is a smooth point
of Vi for each i.
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An element g ∈ Aut(X) is called algebraic if there is an algebraic subgroupG ⊂ Aut(X)
such that g ∈ G. An ind-group G = lim−→Gi is called nested if Gi is an algebraic group for
i = 1, 2, . . ..

2.2. Lie algebras of ind-groups. For an ind-variety V =
⋃

k∈N Vk we can define the
tangent space in x ∈ V in the obvious way: we have x ∈ Vk for k ≥ k0, and TxVk ⊂ TxVk+1

for k ≥ k0, and then we define

TxV :=
⋃
k≥k0

TxVk,

which is a vector space of at most countable dimension.
For an ind-group G, the tangent space TeG has a natural structure of a Lie algebra

which is denoted by LieG, see [7, Section 4] and [4, Section 2] for details.

2.3. Ga-actions. Given an affine variety X, we denote by Autalg(X) ⊂ Aut(X) the
subgroup generated by all connected algebraic subgroups of the automorphism group
Aut(X).
An element u ∈ Aut(X) is called unipotent if u belongs to an algebraic subgroup of

Aut(X) isomorphic to Ga. We denote the automorphism subgroup of Aut(X) generated
by all the unipotent elements by U(X).

3. Ind-subgroup with powers of elements

In this section we explore the situation when an ind-subgroup contains some power of
any element of the ind-group and prove Theorem 3.1.

Theorem 3.1. Let G be a connected ind-group and H ⊂ G be a closed connected ind-
subgroup with a geometrically smooth point. Assume that for any g ∈ G there exists d ∈ N
such that gd ∈ H. Then G = H.

By [4, Theorem 0.1.1] and [4, Remark 2.2.3] there exist ind-structures G = lim−→Gi and
H = lim−→Hi such that each Gi and Hi is an irreducible subset containing the identity.
Moreover, since there exists a geometrically smooth point p ∈ H, then every point in H
is geometrically smooth, and we may assume that each Hi is smooth at the identity.

Remark 3.2. Any nested ind-group is geometrically smooth at each point. However,
to our knowledge, this property is not proven for arbitrary ind-groups. For example, a
stronger property of being strongly smooth does not hold for the ind-group Aut(A2), see
[4, Corollary 14.1.2]. More generally, this group does not admit a filtration by normal
varieties.

Consider the multiplication map

µd : G
d = G× · · · ×G︸ ︷︷ ︸

d times

→ G, (g1, . . . , gd) 7→ g1 · · · gd.

Its differential is the linear map

dµd : (LieG)d = LieG× · · · × LieG︸ ︷︷ ︸
d times

→ LieG.

We have the following statement.

Lemma 3.3. Given (x1, . . . , xd) ∈ (LieG)d, the following holds:

dµd((x1, . . . , xd)) = x1 + · · ·+ xd.
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Proof. By linearity,

(1) dµd((x1, . . . , xd)) =
∑
i

dµd((0, . . . , 0, xi, 0, . . . , 0)).

We claim that dµd((0, . . . , 0, xi, 0, . . . , 0)) = xi. Indeed, let us denote

si : G → G× · · · ×G︸ ︷︷ ︸
d times

, g 7→ (id, . . . , g︸︷︷︸
i-th position

, . . . , id).

The composition µd ◦ si is the trivial automorphism of G. Hence,

(2) d(µd ◦ si) : LieG
dsi→ LieG⊕ · · · ⊕ LieG︸ ︷︷ ︸

d times

dµd→ LieG

is the identity map, where the first map in (2) is given by the embedding into the i-th
coordinate. Therefore, we conclude that dµd((0, . . . , 0, xi, 0, . . . , 0)) = xi. Now, from (1)
it follows that

dµd((x1, . . . , xd)) =
∑
i

xi.

□

Definition 3.4. We denote ϕd : G → G, g 7→ gd. It is an endomorphism of an ind-variety.

Corollary 3.5. The differential dϕd : LieG → LieG satisfies

dϕd(x) = d · x

for any x ∈ LieG.

Proof. Consider an embedding

s : G → G× · · · ×G︸ ︷︷ ︸
d times

; g 7→ (g, . . . , g).

Its differential is the embedding

ds : LieG → LieG⊕ · · · ⊕ LieG︸ ︷︷ ︸
d times

; x 7→ (x, . . . , x).

Since ϕd = µd ◦ s, by Lemma 3.3

(3) dϕd(x) = dµd((x, . . . , x)) = d · x.

□

Definition 3.6. For each d, k ∈ N we denote

Xd,k = ϕ−1
d (Hk) = {g ∈ G | gd ∈ Hk} ⊂ G.

Lemma 3.7. (1) The subset Xd,k is closed in G for any d, k ∈ N.
(2) For any closed algebraic subset A ⊂ G there exist d, k ∈ N such that A ⊂ Xd,k.

Proof. The map ϕd is a morphism of ind-varieties, so the first statement follows from
Xd,k = ϕ−1

d (Hk).
The increasing sequence of closed subsets

X1!,1 ⊂ X2!,2 ⊂ . . . ⊂ Xi!,i ⊂ . . .

exhausts G, hence A ⊂ Xi!,i for some i ∈ N. We may take d = i! and k = i to get the
second assertion. See also [4, Theorem 1.3.3]. □
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Proof of Theorem 3.1. Denote the restriction of ϕd : G → G, g 7→ gd, to Xd,k by ϕd,k.
Then

ϕd,k : Xd,k → Hk, g 7→ gd.

Its differential map at the identity,

d(ϕd,k)id : TidXd,k → TidHk,

is given by x 7→ d · x due to Corollary 3.5. This map has trivial kernel and is surjective
due to Hk ⊂ Xd,k. So, dimTidXd,k = dimTidHk.
Since Hk is smooth at the identity, dimTidHk = dimHk. Let Y be the union of

irreducible components of Xd,k containing the identity. From Hk ⊂ Y and dimTidY =
dimHk we infer that Y = Hk. Thus, the setXd,k containsHk as an irreducible component,
and other components do not contain the identity.

By Lemma 3.7, for any i ∈ N there exist d, k ∈ N such that Gi ⊂ Xd,k. Since Gi is
irreducible and contains the identity, Gi is a subset of the only irreducible component of
Xd,k which contains the identity, namely, Hk. We conclude that G ⊆ H. □

4. Neutral component without non-algebraic elements

In this section we assume that Aut◦(X) consists of algebraic elements. By [5, Main
Theorem], U(X) is an abelian unipotent ind-group (which is trivial, one-dimensional,
or infinite-dimensional), and the subgroup Autalg(X) generated by connected algebraic
subgroups equals T ⋉ U(X), where T is a maximal algebraic torus.

Lemma 4.1. For any algebraic element g ∈ Aut◦(X) there exists d ∈ N such that
gd ∈ T ⋉ U(X).

Proof. The Zariski closure of {gn | n ∈ Z} is an abelian algebraic group, which we denote
by G. The subgroup G◦ is of finite index in G, so we may denote d = |G/G◦| and we
have gd ∈ G◦. Since G◦ is a connected algebraic group, G◦ ⊂ T ⋉ U(X). The claim
follows. □

Remark 4.2. By [2, Theorem 1.1], for any algebraic group G there is a finite subgroup
H ⊂ G such that G = H ·G◦. Thus, any algebraic element of Aut(X) is a product of an
element of Autalg(X) and a finite order one.

As we have mentioned above, U(X) is a direct limit of its unipotent algebraic subgroups,
i.e., U(X) = lim−→U(X)k, where each U(X)k is a closed unipotent algebraic subgroup of
U(X). We set U(X)k = U(X) for each k if U(X) is itself an algebraic group.

Proof of Theorem 1.1. Assume that all elements of Aut◦(X) are algebraic. By [5, The-
orem 1.3], Autalg(X) equals T ⋉ U(X). By Lemma 4.1, we may apply Theorem 3.1 to
G = Aut◦(X) and H = T⋉ U(X) and conclude that Aut◦(X) = T⋉ U(X). This proves
the implication (1) ⇒ (3). The implications (3) ⇒ (2) ⇒ (1) are obvious. □

Corollary 4.3. Let X be an affine algebraic variety without Ga-actions such that Aut
◦(X)

consists of algebraic elements. Then Aut◦(X) is an algebraic torus of dimension at most
dimX.

Proof. In this case LieAut◦(X) = t, so Aut◦(X) is finite-dimensional. Then Aut◦(X) is
a connected algebraic group and is defined by LieT. □

Remark 4.4. IfX does not admitGa- andGm-actions, then Theorem 1.1 can be obtained
from [1, Proposition 3.6]. Indeed, in this case all elements of Aut◦(X) are of finite order.
Hence, for some n ∈ N the subset of elements of order at most n, which is a closed,
contains the identity as a limit point.
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5. The automorphism group of a rigid variety

In this section we do not assume that Aut◦(X) consists of algebraic elements. Assume
that an affine variety X is rigid, i.e., admits no Ga-actions. By [5, Main Theorem], all
Gm-actions on X commute, hence Autalg(X) = T is an algebraic torus.

Proposition 5.1. Each element of Aut◦(X) commutes with T.

Proof. The torus T is a normal closed subgroup in Aut◦(X). Consider the action of
Aut◦(X) on T by conjugations. Since the group of automorphisms of the algebraic torus
T of dimension n seen as an algebraic group is isomorphic to GL(n,Z), we obtain the
homomorphism Aut◦(X) → GL(n,Z). Since GL(n,Z) is discrete, the image of Aut◦(X)
is trivial. The assertion follows. □

Corollary 5.2. Each element of Aut◦(X) is contained in an abelian group A×T, where
A is a cyclic group.

Remark 5.3. Any maximal abstract abelian subgroup G of Aut◦(X) is an at most
countable extension of T. Indeed, G coincides with its centralizer, hence is a closed ind-
subgroup ([8, Lemma 2.4]). Further, G contains T, and by [3, Theorem B] the connected
component G◦ is algebraic. So, G◦ = T.
In particular, the only maximal connected abelian ind-subgroup of Aut◦(X) is T.

Question 5.4. Given a rigid affine variety X, what can we say about the subset of
algebraic elements of Aut◦(X)?
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matics, Vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002.
[8] A. Liendo, A. Regeta, and C. Urech, Characterisation of affine surfaces by their automorphism groups,
to appear in Ann. Sc. Norm. Super. di Pisa, arXiv:1805.03991, doi: 10.2422/2036-2145.201905 009.
[9] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), no. 1-2,
208–212.

Kharkevich Institute for Information Transmission Problems, 19 Bolshoy Karetny
per., 127994 Moscow, Russia

National Research University Higher School of Economics, 20 Myasnitskaya ulitsa,
Moscow 101000, Russia

Email address: a@perep.ru

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany
Email address: andriyregeta@gmail.com

6


	1. Introduction
	2. Preliminaries
	2.1. Ind-groups
	2.2. Lie algebras of ind-groups
	2.3. Ga-actions

	3. Ind-subgroup with powers of elements 
	4. Neutral component without non-algebraic elements
	5. The automorphism group of a rigid variety
	References

