On the automorphism group of an affine variety

Andriy Regeta
University of Jena

March 5, 2023

Similarly as the group of linear automorphisms of the affine n-space \mathbb{A}^{n} which is usually denoted by GL_{n} plays an important role in the theory of algebraic groups, the group of regular automorphisms of \mathbb{A}^{n} should play an important role in the study of the infinite-dimensional algebraic groups which are usually called ind-groups.

Ind-groups

Ind-structure on $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$.

Any automorphism $f \in \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is given by $\left(f_{1}, \ldots, f_{n}\right)$, where $f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Define
$\operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Aut}\left(\mathbb{A}^{n}\right) \mid \operatorname{deg} f=\max _{i} \operatorname{deg} f_{i}, \operatorname{deg} f^{-1} \leq d\right\}$
$\operatorname{Aut}\left(\mathrm{A}^{n}\right)=\cup_{d} \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d} ;$

Ind-groups

Ind-structure on $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$.

Any automorphism $f \in \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is given by $\left(f_{1}, \ldots, f_{n}\right)$, where $f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Define
$\operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Aut}\left(\mathbb{A}^{n}\right) \mid \operatorname{deg} f=\max _{i} \operatorname{deg} f_{i}, \operatorname{deg} f^{-1} \leq d\right\}$
$\operatorname{Aut}\left(\mathrm{A}^{n}\right)=\cup_{d} \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}$;
$S \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is called closed (open) if $S \cap \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}$ is closed (open) for each $d \in \mathbb{N}$.

Ind-groups

Ind-structure on $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$.

Any automorphism $f \in \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is given by $\left(f_{1}, \ldots, f_{n}\right)$, where $f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Define
$\operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Aut}\left(\mathbb{A}^{n}\right) \mid \operatorname{deg} f=\max _{i} \operatorname{deg} f_{i}, \operatorname{deg} f^{-1} \leq d\right\}$
$\operatorname{Aut}\left(\mathrm{A}^{n}\right)=\cup_{d} \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}$;
$S \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is called closed (open) if $S \cap \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)_{d}$ is closed (open) for each $d \in \mathbb{N}$.
The map $\varphi: \operatorname{Aut}\left(\mathbb{A}^{n}\right) \times \operatorname{Aut}\left(\mathbb{A}^{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{A}^{n}\right),(g, h) \mapsto g h^{-1}$ is the morphism of ind-varieties.

Structure of Aut $\left(\mathbb{A}^{n}\right)$

The structure of $\operatorname{Aut}\left(\mathbb{A}^{1}\right)$ is well-known, it is a 2 -dimensional algebraic group.

Structure of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$

The structure of $\operatorname{Aut}\left(\mathbb{A}^{1}\right)$ is well-known, it is a 2 -dimensional algebraic group.
The group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is already much bigger. In particular, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$

- contains the subgroup $\{(x, y) \mapsto(x, y+f(x)) \mid f \in \mathbb{C}[x]\}$
- contains the subgroup $\{(x, y) \mapsto(x+f(y), y) \mid f \in \mathbb{C}[y]\}$
- contains a free product of these subgroups;

Structure of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$

The structure of $\operatorname{Aut}\left(\mathbb{A}^{1}\right)$ is well-known, it is a 2 -dimensional algebraic group.
The group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is already much bigger. In particular, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$

- contains the subgroup $\{(x, y) \mapsto(x, y+f(x)) \mid f \in \mathbb{C}[x]\}$
- contains the subgroup $\{(x, y) \mapsto(x+f(y), y) \mid f \in \mathbb{C}[y]\}$
- contains a free product of these subgroups;
- Moreover, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is the amalgamated product of its two subgroups which provides some knowledge about the structure of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$;

Structure of Aut $\left(\mathbb{A}^{n}\right)$

The structure of $\operatorname{Aut}\left(\mathbb{A}^{1}\right)$ is well-known, it is a 2 -dimensional algebraic group.
The group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is already much bigger. In particular, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$

- contains the subgroup $\{(x, y) \mapsto(x, y+f(x)) \mid f \in \mathbb{C}[x]\}$
- contains the subgroup $\{(x, y) \mapsto(x+f(y), y) \mid f \in \mathbb{C}[y]\}$
- contains a free product of these subgroups;
- Moreover, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is the amalgamated product of its two subgroups which provides some knowledge about the structure of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$;
- But we know nearly nothing about the closed connected subgroups of Aut $\left(\mathbb{A}^{2}\right)$. For example, we do not know if such a subgroup contains an algebraic element. Is $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$ simple as an ind-group?

Structure of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$

The structure of $\operatorname{Aut}\left(\mathbb{A}^{1}\right)$ is well-known, it is a 2 -dimensional algebraic group.
The group $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is already much bigger. In particular, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$

- contains the subgroup $\{(x, y) \mapsto(x, y+f(x)) \mid f \in \mathbb{C}[x]\}$
- contains the subgroup $\{(x, y) \mapsto(x+f(y), y) \mid f \in \mathbb{C}[y]\}$
- contains a free product of these subgroups;
- Moreover, $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ is the amalgamated product of its two subgroups which provides some knowledge about the structure of $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$;
- But we know nearly nothing about the closed connected subgroups of Aut $\left(\mathbb{A}^{2}\right)$. For example, we do not know if such a subgroup contains an algebraic element. Is $\operatorname{SAut}\left(\mathbb{A}^{2}\right)$ simple as an ind-group?
- We know essentially nothing about the closed connected subgroups of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$.

Structure of Aut(affine surface $=S$)

Perepechko and Zaidenberg proved that the automorphism group of an affine surface either contains an algebraic subgroup or is discrete.

Structure of Aut(affine surface $=S$)

Perepechko and Zaidenberg proved that the automorphism group of an affine surface either contains an algebraic subgroup or is discrete. If Aut (S) does not contain algebraic elements, $\operatorname{Aut}(S)$ is discrete.

Structure of Aut(affine surface $=S$)

Perepechko and Zaidenberg proved that the automorphism group of an affine surface either contains an algebraic subgroup or is discrete. If $\operatorname{Aut}(S)$ does not contain algebraic elements, $\operatorname{Aut}(S)$ is discrete.

Perepechko-R.

Let X be an affine variety. The following conditions are equivalent:
(1) all elements of $\mathrm{Aut}^{\circ}(X)$ are algebraic;
(2) the subgroup $\operatorname{Aut}^{\circ}(X) \subset \operatorname{Aut}(X)$ is a closed nested ind-subgroup;
(3) $\operatorname{Aut}^{\circ}(X)=T \ltimes U(X)$, where T is a maximal subtorus of $\operatorname{Aut}(X)$, and $U(X)$ is abelian and consists of all unipotent elements of $\operatorname{Aut}(X)$.

Structure of Aut(affine surface $=S$)

Example

Blanc and Dubouloz constracted a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut $(S)_{\text {alg }}$ of $\operatorname{Aut}(S)$ generated by all algebraic subgroups of Aut (S) is not generated by any countable family of such subgroups, and the quotient $\operatorname{Aut}(S) / \operatorname{Aut}(S)_{\text {alg }}$ contains a free group over an uncountable set of generators.

Structure of Aut(affine surface $=S$)

Example

Blanc and Dubouloz constracted a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut $(S)_{\text {alg }}$ of $\operatorname{Aut}(S)$ generated by all algebraic subgroups of Aut (S) is not generated by any countable family of such subgroups, and the quotient $\operatorname{Aut}(S) / \operatorname{Aut}(S)_{\text {alg }}$ contains a free group over an uncountable set of generators.
So, we know essentially nothing about the automorphism group of an affine surface.

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\operatorname{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\operatorname{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure;

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\operatorname{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure; An orbit of an ind-group is open in its closure (Furter-Kraft).

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\mathrm{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure;

An orbit of an ind-group is open in its closure (Furter-Kraft).
2. Any commutative connected linear algebraic group is isomorphic to $\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ for some $s, l \in \mathbb{N} \cup\{0\}$.

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\mathrm{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure;

An orbit of an ind-group is open in its closure (Furter-Kraft).
2. Any commutative connected linear algebraic group is isomorphic to
$\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ for some $s, l \in \mathbb{N} \cup\{0\}$.
A commutative connected subgroup of $\operatorname{Aut}(X)$ is a (countable) union of connected algebraic subgroups isomorphic to $\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ (Cantat-Xie-R.).

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\mathrm{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure;

An orbit of an ind-group is open in its closure (Furter-Kraft).
2. Any commutative connected linear algebraic group is isomorphic to
$\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ for some $s, l \in \mathbb{N} \cup\{0\}$.
A commutative connected subgroup of $\operatorname{Aut}(X)$ is a (countable) union of connected algebraic subgroups isomorphic to $\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ (Cantat-Xie-R.). 3. All Borel subgroups of a linear algebraic group are conjugate.

Ind-groups vs. algebraic groups

Question (propaganded in particular by Schafarevich and Serre)

Which properties of GL_{n} extend to $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$?

Algebraic group actions vs. ind-group actions

0 . Aut (X) is isomorphic to a linear algebraic group if and only if $\mathrm{Aut}^{\circ}(X)$ is isomorphic to an algebraic torus or a direct limit of commutative unipotent groups.

1. An orbit of an algebraic group is open in its closure;

An orbit of an ind-group is open in its closure (Furter-Kraft).
2. Any commutative connected linear algebraic group is isomorphic to $\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ for some $s, l \in \mathbb{N} \cup\{0\}$.
A commutative connected subgroup of $\operatorname{Aut}(X)$ is a (countable) union of connected algebraic subgroups isomorphic to $\mathbb{G}_{m}^{s} \times \mathbb{G}_{a}^{\prime}$ (Cantat-Xie-R.).
3. All Borel subgroups of a linear algebraic group are conjugate.

An analogous statement does not hold for ind-groups. For example, not all maximal solvable subgroups of $\operatorname{Aut}\left(\mathbb{A}^{3}\right)$ are conjugate.

Ind-groups vs. algebraic groups

However, there is a chance to prove that a maximal connected solvable subgroup of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ has solvability length $\leq n+1$ and such subgroups of solvability length $n+1$ are conjugate.

Ind-groups vs. algebraic groups

However, there is a chance to prove that a maximal connected solvable subgroup of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ has solvability length $\leq n+1$ and such subgroups of solvability length $n+1$ are conjugate.
4. Assume G and H are reductive algebraic groups and $\varphi: G \rightarrow H$ is an isomorphism of abstract groups. Then $G \simeq H$ as an algebraic group.

Ind-groups vs. algebraic groups

However, there is a chance to prove that a maximal connected solvable subgroup of $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ has solvability length $\leq n+1$ and such subgroups of solvability length $n+1$ are conjugate.
4. Assume G and H are reductive algebraic groups and $\varphi: G \rightarrow H$ is an isomorphism of abstract groups. Then $G \simeq H$ as an algebraic group.
Analogous result does not hold for ind-groups. Define

$$
\mathrm{D}_{p}=\{x y=p(z)\} \subset \mathbb{A}^{3}
$$

For two generic D_{p} and D_{q} the is an isomorphism of abstract groups Aut $\left(\mathrm{D}_{p}\right) \simeq \operatorname{Aut}\left(\mathrm{D}_{q}\right)$, but these groups are not isomorphic as ind-groups (Leuenberger-R.).

Theorem A (Cantat-Xie-R.)

Assume $V \subset \operatorname{Aut}(X)$ is an irreducible algebraic subset of commuting automorphisms that contains the identity. Then the group generated by V is a connected linear algebraic subgroup of $\operatorname{Aut}(X)$.

Theorem A (Cantat-Xie-R.)

Assume $V \subset \operatorname{Aut}(X)$ is an irreducible algebraic subset of commuting automorphisms that contains the identity. Then the group generated by V is a connected linear algebraic subgroup of $\operatorname{Aut}(X)$.

Corollary (Cantat-Xie-R.)

A commutative connected closed subgroup of $\operatorname{Aut}(X)$ is the union of linear algebraic groups.

Consider a nontrivial \mathbb{G}_{a}-action on X, given by $\lambda: \mathbb{G}_{a} \rightarrow \operatorname{Aut}(X)$. If $f \in \mathcal{O}(X)$ is \mathbb{G}_{a}-invariant, then the modification $f \cdot \lambda$ of λ is defined in the following way:

$$
(f \cdot \lambda)(s) x=\lambda(f(x) s) x
$$

for $s \in \mathbb{C}$ and $x \in X$. It is again a \mathbb{G}_{a}-action. If X is irreducible and $f \neq 0$, then $f \cdot \lambda$ and λ have the same invariants.

Consider a nontrivial \mathbb{G}_{a}-action on X, given by $\lambda: \mathbb{G}_{a} \rightarrow \operatorname{Aut}(X)$. If $f \in \mathcal{O}(X)$ is \mathbb{G}_{a}-invariant, then the modification $f \cdot \lambda$ of λ is defined in the following way:

$$
(f \cdot \lambda)(s) x=\lambda(f(x) s) x
$$

for $s \in \mathbb{C}$ and $x \in X$. It is again a \mathbb{G}_{a}-action. If X is irreducible and $f \neq 0$, then $f \cdot \lambda$ and λ have the same invariants.
If $U \subset \operatorname{Aut}(X)$ is a closed subgroup isomorphic to \mathbb{G}_{a} and if $f \in \mathcal{O}(X)^{U}$ is a U-invariant, then in a similar way we define the modification $f \cdot U$ of U. Choose an isomorphism $\lambda: \mathbb{C}^{+} \rightarrow U$ and set

$$
f \cdot U=\left\{(f \cdot \lambda)(s) \mid s \in \mathbb{G}_{a}\right\} .
$$

Application of Theorem A

A maximal commutative connected closed subgroup of $\operatorname{Aut}(X)$ that does not contain semisimple elements equals

$$
\left\{f \cdot u \in Q\left(\mathcal{O}(X)^{U}\right) \cdot U \mid f \cdot u \text { is an automorphism of } X\right\}
$$

where $u \in U$ and U is an algebraic unipotent subgroup of $\operatorname{Aut}(X)$. Moreover, this subgroup is a maximal commutative subgroup of $\operatorname{Aut}(X)$.

Application of Theorem A

A maximal commutative connected closed subgroup of $\operatorname{Aut}(X)$ that does not contain semisimple elements equals

$$
\left\{f \cdot u \in Q\left(\mathcal{O}(X)^{U}\right) \cdot U \mid f \cdot u \text { is an automorphism of } X\right\}
$$

where $u \in U$ and U is an algebraic unipotent subgroup of $\operatorname{Aut}(X)$. Moreover, this subgroup is a maximal commutative subgroup of $\operatorname{Aut}(X)$. As a consequence, any isomorphism $\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ sends a unipotent element to a unipotent element.

The case of the group of birational transformations

Theorem A does not hold for the group of birational transformations
For $X=\mathbb{A}^{2}$ consider

$$
V=\{(x, y) \mapsto(x,(1+a x) y) \mid a \in \mathbb{C}\}
$$

Then id $\in V$, but $\langle V\rangle$ is not an algebraic group since it is not of bounded degree.

Theorem B (van Santen-R.)

Let X be a G-spherical affine variety different from algebraic torus and Y be an affine irreducible normal variety. If there is an isomorphism $\varphi: \operatorname{Aut}(Y) \simeq \operatorname{Aut}(X)$, then $\varphi(G) \subset \operatorname{Aut}(Y)$ is a reductive subgroup, Y is $\varphi(G)$-spherical and $\Lambda^{+}(X)=\Lambda^{+}(Y)$.

Theorem B (van Santen-R.)

Let X be a G-spherical affine variety different from algebraic torus and Y be an affine irreducible normal variety. If there is an isomorphism $\varphi: \operatorname{Aut}(Y) \simeq \operatorname{Aut}(X)$, then $\varphi(G) \subset \operatorname{Aut}(Y)$ is a reductive subgroup, Y is $\varphi(G)$-spherical and $\Lambda^{+}(X)=\Lambda^{+}(Y)$.
In particular, an affine toric variety X is determined by its automorphism group in the category of affine irreducible toric varieties.

Theorem B (van Santen-R.)

Let X be a G-spherical affine variety different from algebraic torus and Y be an affine irreducible normal variety. If there is an isomorphism $\varphi: \operatorname{Aut}(Y) \simeq \operatorname{Aut}(X)$, then $\varphi(G) \subset \operatorname{Aut}(Y)$ is a reductive subgroup, Y is $\varphi(G)$-spherical and $\Lambda^{+}(X)=\Lambda^{+}(Y)$.
In particular, an affine toric variety X is determined by its automorphism group in the category of affine irreducible toric varieties.

Example (the case of algebraic torus)

Let T be an algebraic torus and let C be a smooth affine curve. If C has trivial automorphism group and no invertible global functions, then there is an isomorphism $\operatorname{Aut}(T) \rightarrow \operatorname{Aut}(C \times T)$ that preserves algebraic subgroups.

Projective case

Note that there is no projective variety determined by its automorphism group in a reasonably big category of algebraic varieties.

Projective case

Note that there is no projective variety determined by its automorphism group in a reasonably big category of algebraic varieties.

Example

Most toric projective varieties have automorphism group isomorphic to algebraic torus. Hence, projective toric variety is not determined by its automorphism group.

Projective case

Theorem(Cantat, Xie)

Let X be an n-dimensional quasi-projective variety, where $n \geq 2$. If $\operatorname{Bir}(X)$ is isomorphic to $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, then X is rational.

Projective case

Theorem(Cantat, Xie)

Let X be an n-dimensional quasi-projective variety, where $n \geq 2$. If $\operatorname{Bir}(X)$ is isomorphic to $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, then X is rational.

Moreover, if X is a variety of dimension n and there exist an injective morphism of groups $\operatorname{SL}(n+1, \mathbb{Z}) \hookrightarrow \operatorname{Bir}(X)$, then X is rational.

Projective case

Theorem(Cantat, Xie)

Let X be an n-dimensional quasi-projective variety, where $n \geq 2$. If $\operatorname{Bir}(X)$ is isomorphic to $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, then X is rational.

Moreover, if X is a variety of dimension n and there exist an injective morphism of groups $\operatorname{SL}(n+1, \mathbb{Z}) \hookrightarrow \operatorname{Bir}(X)$, then X is rational.
\mathbb{P}^{n} is uniquely determined (up to birational equivalence) among n-dimensional varieties by its group of birational transformations.

Projective case

Theorem(Cantat, Xie)

Let X be an n-dimensional quasi-projective variety, where $n \geq 2$. If $\operatorname{Bir}(X)$ is isomorphic to $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, then X is rational.

Moreover, if X is a variety of dimension n and there exist an injective morphism of groups $\operatorname{SL}(n+1, \mathbb{Z}) \hookrightarrow \operatorname{Bir}(X)$, then X is rational.
\mathbb{P}^{n} is uniquely determined (up to birational equivalence) among n-dimensional varieties by its group of birational transformations.

Show that \mathbb{P}^{n} is uniquely determined (up to birational equivalence) among all irreducible varieties by its group of birational transformations.

Idea of the proof of Theorem 1

- (1) $V \subset \operatorname{Aut}(X)$ is an irreducible algebraic subvariety;
- (2) Define $W=V V^{-1}$. It is constructible subset of $\operatorname{Aut}(X)$; We have a sequence of constructible subsets $W \subset W^{2} \subset W^{3} \subset \ldots$ and to prove the theorem it is enough to show that $W^{i}=W^{i+1}$ for some $i \in \mathbb{N}$;
- (3) There is a Zariski dense open subset U of X and an integer k_{0} such that $\operatorname{dim}\left(W^{k}(x)\right)=s_{X}$ for all $k \geq k_{0}$ and all $x \in U$.
- (4) There is an integer $I \geq 0$ such that for every $x \in X$, $W^{\prime}(x)=\langle W\rangle(x)$ and $W^{\prime}(x)$ is an open subset of $\overline{\langle W\rangle(x)}$.

$\langle W\rangle$ acts with a dence orbit

If $\langle W\rangle$ acts on X with an orbit of dimension $\operatorname{dim} X$, then $\langle W\rangle$ acts on X with an open orbit $\langle W\rangle\left(x_{0}\right)=W^{\prime}\left(x_{0}\right)$. Hence, for any $f \in\langle W\rangle$ there exists $g \in W^{\prime}$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$ or equivalently $f g^{-1}\left(x_{0}\right)=x_{0}$. Moreover, since $\langle W\rangle$ is commutative, $h\left(x_{0}\right)=h f g^{-1}\left(x_{0}\right)=f g^{-1}\left(h\left(x_{0}\right)\right)$ for any $h \in\langle W\rangle$. Since $\langle W\rangle$ acts on X with an open orbit, $f=g$ and so $\langle W\rangle=W^{\prime}$.

$\langle W\rangle$ acts without dence orbit

- By (3) thetre is an integer $I>0$ and a W-invariant open subset $U \subset X$ such that $s(x)=s_{X}$ and $W^{\prime}(x)=\langle W\rangle(x)$ for every $x \in U$.
- One of the crucial steps is to prove an analog of Rosenlicht's quotient theorem for $\langle W\rangle$: we show that there is an open subset $Y \subset X$ such that the geometric quotient $Y /\langle W\rangle$ exists and we can construct (after possible shrinking of $Y /\langle W\rangle$ and Y respectively) a dominant morphism $\pi: Y \rightarrow B$ such that:
(1) very fiber of π, in particular its generic fiber, is geometrically irreducible;
(2) the generic fiber of π is normal and affine, shrinking B (and Y accordingly) again, we may assume B and Y to be normal and affine;
(3) the action of $\langle W\rangle$ on the generic fiber Y_{η} has bounded degree.

Denote by \mathbb{A}_{B}^{N} the affine N-space over $\mathcal{O}(B)$ and by $\operatorname{Aut}_{B}\left(\mathbb{A}_{B}^{n}\right)$ the group of automorphisms $g \in \operatorname{Aut}\left(\mathbb{A}_{B}^{n}\right)$ such that $\psi=\psi \circ g$, where $\psi: \mathbb{A}_{B}^{n} \rightarrow B$ is the projection morphism.

Denote by \mathbb{A}_{B}^{N} the affine N-space over $\mathcal{O}(B)$ and by $\operatorname{Aut}_{B}\left(\mathbb{A}_{B}^{n}\right)$ the group of automorphisms $g \in \operatorname{Aut}\left(\mathbb{A}_{B}^{n}\right)$ such that $\psi=\psi \circ g$, where $\psi: \mathbb{A}_{B}^{n} \rightarrow B$ is the projection morphism.

Black box

(1) There exist an embedding $\tau: Y \rightarrow \mathbb{A}_{B}^{N}$ for some $N \geq 0$ and a homomorphism $\rho:\langle W\rangle \rightarrow \mathrm{GL}_{N}(\mathcal{O}(B)) \subset \operatorname{Aut}_{B}\left(\mathbb{A}_{B}^{N}\right)$ such that

$$
\tau \circ g=\rho(g) \circ \tau \quad(\forall g \in\langle W\rangle)
$$

(2) The image of ρ is a subgroup of $U_{B}(B) \times \mathbb{G}_{m, B}^{s}(B) \subset \mathrm{GL}_{N}(\mathcal{O}(B))$.
(3) The ind-groups $U_{B}(B)$ and $U_{B}(B)$ are increasing unions of algebraic subgroups.
(9) We conclude that the image of ρ is contained in the algebraic subgroup of $U_{B}(B) \times \mathbb{G}_{m, B}^{s}(B)$ and so the image of ρ is an algebraic subgroup of $\mathrm{GL}_{N}(\mathcal{O}(B)) \subset \operatorname{Aut}_{B}\left(\mathbb{A}_{B}^{N}\right)$.

Recall Theorem B

Definition

Let G be a reductive, $B \subset G$ a Borel subgroup. An affine normal G-variety X is called spherical if B acts on X with an open orbit.

Recall Theorem B

Definition

Let G be a reductive, $B \subset G$ a Borel subgroup. An affine normal G-variety X is called spherical if B acts on X with an open orbit.

Weight Monoid

$\mathcal{O}(X)$ is a multiplicity free G-module, that is, the multiplicity of every irreducible module in $\mathcal{O}(X)$ is at most 1 . By the weight monoid $\Lambda^{+}(X)$ of X we mean the set of all highest weights of the G-module $\mathcal{O}(X)$.

Recall Theorem B

Theorem B (van Santen-R.)

Let X be a G-spherical affine variety different from algebraic torus and Y be an affine irreducible normal variety. If there is an isomorphism $\varphi: \operatorname{Aut}(Y) \simeq \operatorname{Aut}(X)$, then $\varphi(G) \subset \operatorname{Aut}(Y)$ is a reductive subgroup, Y is $\varphi(G)$-spherical and $\Lambda^{+}(X)=\Lambda^{+}(Y)$.

Recall Theorem B

Theorem B (van Santen-R.)

Let X be a G-spherical affine variety different from algebraic torus and Y be an affine irreducible normal variety. If there is an isomorphism $\varphi: \operatorname{Aut}(Y) \simeq \operatorname{Aut}(X)$, then $\varphi(G) \subset \operatorname{Aut}(Y)$ is a reductive subgroup, Y is $\varphi(G)$-spherical and $\Lambda^{+}(X)=\Lambda^{+}(Y)$.

Theorem C (van Santen, R.)

Let T be an algebraic torus and let Y be an irreducible normal affine variety such that $\operatorname{Aut}(T)$, $\operatorname{Aut}(Y)$ are isomorphic and $\operatorname{dim} Y \leq \operatorname{dim} T$. Then T, Y are isomorphic as varieties.

Corollary

- if X is toric, then $Y \simeq X$.
- if X and Y are smooth, then $Y \simeq X$.
- in general, for a given X there are finitely many spherical varieties $Y_{1}, \ldots, Y_{\text {l }}$ such that $\operatorname{Aut}\left(Y_{j}\right) \simeq \operatorname{Aut}(X)$.

Remark

Note that if Y is quasi-projective in the Theorem above, then the result does not hold: for example,

$$
\operatorname{Aut}(X) \simeq \operatorname{Aut}(X \times Z)
$$

where Z is projective with trivial automorphism group. Moreover, the condition on Y to be irreducible is crucial:

$$
\operatorname{Aut}(X) \simeq \operatorname{Aut}(X \sqcup Z)
$$

where Z is an affine variety with the trivial automorphism group.

What if Y is non-normal?

Conjecture/Proposition(Diaz, Liendo, R.)

An affine toric variety X different from algebraic torus is determined by its automorphism groups in the category of all affine irreducible varieties if and only if $X \simeq \mathbb{A}^{1} \times Z$ for some toric Z.

The main issue

Assume $\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ is an isomorphism of abstract groups. It is not clear if φ sends algebraic subgroups to algebraic subgroups.

The main issue

Assume $\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ is an isomorphism of abstract groups. It is not clear if φ sends algebraic subgroups to algebraic subgroups.

There exists an affine surface and an isomorphism $\psi: \operatorname{Aut}(S) \xrightarrow{\sim} \operatorname{Aut}(S)$ such that for any algebraic subgroup $H \subset \operatorname{Aut}(S), \psi(H)$ is not an algebraic subgroup of $\operatorname{Aut}(S)$.

Sketch of the proof

$\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ is an isomorphism. The image of G is an algebraic subgroup of $\operatorname{Aut}(Y)$ isomorphic to G as an algebraic group.

Sketch of the proof

$\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ is an isomorphism. The image of G is an algebraic subgroup of $\operatorname{Aut}(Y)$ isomorphic to G as an algebraic group.

Definition

Let X be an affine spherical G-variety. A unipotent subgroup $H \subset \operatorname{Aut}(X)$ is called a generalized root subgroup (with respect to B) if H is commutative and every one-dimensional subgroup of H is normalized by B.

Sketch of the proof

$\varphi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)$ is an isomorphism. The image of G is an algebraic

 subgroup of $\operatorname{Aut}(Y)$ isomorphic to G as an algebraic group.
Definition

Let X be an affine spherical G-variety. A unipotent subgroup $H \subset \operatorname{Aut}(X)$ is called a generalized root subgroup (with respect to B) if H is commutative and every one-dimensional subgroup of H is normalized by B. the weights of all the one-dimensional subgroups of a generalized root subgroups are the same. This weight we call the weight of the generalized root group.
φ sends generalized root subgroup $\operatorname{Aut}(X)$ with respect to $B \subset G$ to a generalized root subgroup of $\operatorname{Aut}(Y)$ with respect to $\varphi(B) \subset \varphi(G)$ of the same dimension with the same weight.

Sketch of the proof

Proposition

Let Y be an irreducible normal affine G-variety. The following statements are equivalent:

- Y is G-spherical;
- there exists a constant C such that $\operatorname{dim} H \leq C$ for each generalized root subgroup $H \subset \operatorname{Aut}(Y)$.

Since φ sends generalized root subgroups to generalized root subgroups of the same dimension, Y is $\varphi(G)$-spherical.

Sketch of the proof

Proposition

Let Y be an irreducible normal affine G-variety. The following statements are equivalent:

- Y is G-spherical;
- there exists a constant C such that $\operatorname{dim} H \leq C$ for each generalized root subgroup $H \subset \operatorname{Aut}(Y)$.

Since φ sends generalized root subgroups to generalized root subgroups of the same dimension, Y is $\varphi(G)$-spherical.

We study a so-called asymptotic cones of weights of root subgroups. Since φ sends root subgroups to root subgroups of the same weight (this is difficult), we conclude that $\Lambda^{+}(X)=\Lambda^{+}(Y)$.

For the simplicity we concentrate only on toric case

A maximal subtorus $G=T \subset \operatorname{Aut}(X)$ of $\operatorname{dimension} \operatorname{dim} X$ coincides with its centralizer. Hence, $\varphi(T) \subset \operatorname{Aut}(Y)$ also coincides with its centralizer which implies that $\varphi(T) \subset \operatorname{Aut}(Y)$ is closed.

But we do not know a priori if $\varphi(T) \subset \operatorname{Aut}(Y)$ is connected!

For the simplicity we concentrate only on toric case

A maximal subtorus $G=T \subset \operatorname{Aut}(X)$ of $\operatorname{dimension~} \operatorname{dim} X$ coincides with its centralizer. Hence, $\varphi(T) \subset \operatorname{Aut}(Y)$ also coincides with its centralizer which implies that $\varphi(T) \subset \operatorname{Aut}(Y)$ is closed.

But we do not know a priori if $\varphi(T) \subset \operatorname{Aut}(Y)$ is connected!

A subgroup $\varphi(T)^{\circ} \subset \operatorname{Aut}(Y)$ is a commutative connected non-trivial subgroup. Hence, by Theorem A it is a union of algebraic subgroups of Aut (Y). Moreover, $\varphi(T)^{\circ}$ does not contain unipotent elements, since otherwise, if there is a unipoptent element $u \in \varphi(T)^{\circ}$, then $\varphi^{-1}(u) \in T$ is a unipotent element (by Application of Theorem A) which is not the case. Therefore, $\varphi(T)^{\circ}$ is isomorphic to an algebraic torus.

There is a trick how to show that $\varphi(T)^{\circ}$ is actually $\operatorname{dim} X=n$-dimensional.

Root subgroups are sent to root subgroups

All the generalized root subgroups of $\operatorname{Aut}(X)$ with respect to $G=T$ are one-dimensional subgroups $U \simeq \mathbb{G}_{a}$ and have non-trivial different weights. Moreover, T acts on U with two orbits.

Root subgroups are sent to root subgroups

All the generalized root subgroups of $\operatorname{Aut}(X)$ with respect to $G=T$ are one-dimensional subgroups $U \simeq \mathbb{G}_{a}$ and have non-trivial different weights. Moreover, T acts on U with two orbits.

Since each unipotent element is sent to a unipotent element, $\varphi(U) \subset \operatorname{Aut}(Y)$ consists of unipotent elements. Therefore, $\overline{\varphi(U)} \subset \operatorname{Aut}(Y)$ is connected group which is a direct limit of unipotent algebraic groups.

Root subgroups are sent to root subgroups

All the generalized root subgroups of $\operatorname{Aut}(X)$ with respect to $G=T$ are one-dimensional subgroups $U \simeq \mathbb{G}_{a}$ and have non-trivial different weights. Moreover, T acts on U with two orbits.

Since each unipotent element is sent to a unipotent element, $\varphi(U) \subset \operatorname{Aut}(Y)$ consists of unipotent elements. Therefore,
$\overline{\varphi(U)} \subset \operatorname{Aut}(Y)$ is connected group which is a direct limit of unipotent algebraic groups.

Since $\varphi(T)^{\circ} \subset \varphi(T)$ is a subgroup of countable index, $\varphi(T)$ acts on $\varphi(U)$ with countably many orbits

$$
\operatorname{dim} \varphi(U) \leq \operatorname{dim} \varphi(T)^{\circ}=\operatorname{dim} T
$$

Root subgroups are sent to root subgroups

Moreover, since T acts on U with the kernel that contains a subgroup isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{n-1}$ for any $p \in \mathbb{N}, \varphi(T)$ also acts on $\varphi(U)$ with the kernel that contains a subgroup isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{n-1}$. Therefore, $U \simeq \mathbb{G}_{a}$.

Why $\varphi(T)^{\circ}=\varphi(T)$?

One can choose a product of n commuting root subgroups $V \subset$ Aut (X) with respect to T. T acts on V with a finite kernel. Hence, $\varphi(V)$ is also a product of n commuting root subgroups with respect to $\varphi(T)^{\circ}$. This implies that both $\varphi(T)^{\circ}$ act on $\varphi(V)$ with a finite kernel.

Therefore, $\varphi(T)^{\circ} \subset \varphi(T)$ is a subgroup of finite index.

Why $\varphi(T)^{\circ}=\varphi(T)$?

One can choose a product of n commuting root subgroups $V \subset \operatorname{Aut}(X)$ with respect to T. T acts on V with a finite kernel. Hence, $\varphi(V)$ is also a product of n commuting root subgroups with respect to $\varphi(T)^{\circ}$. This implies that both $\varphi(T)^{\circ}$ act on $\varphi(V)$ with a finite kernel.

Therefore, $\varphi(T)^{\circ} \subset \varphi(T)$ is a subgroup of finite index.

Since both groups $\varphi(T)^{\circ}$ and $\varphi(T)$ are isomorphic to \mathbb{G}_{m}^{n} as abstract groups, all elements of these groups are divisible, i.e., one can take a root of any order of each element inside of the group.

Since any element in a finite group is not divisible, we conclude that $\varphi(T)^{\circ}=\varphi(T)$.

$\operatorname{dim} Y=\operatorname{dim} X$.

There a subtorus $D \subset T \subset \operatorname{Aut}(X)$ of dimension $n-1$ such that all root subgroups of $\operatorname{Aut}(X)$ with respect to D coincide with the root subgroups of $\operatorname{Aut}(X)$ with respect to T. In particular, all root subgroups of $\operatorname{Aut}(X)$ with respect to D have different weights.

$\operatorname{dim} Y=\operatorname{dim} X$.

There a subtorus $D \subset T \subset \operatorname{Aut}(X)$ of dimension $n-1$ such that all root subgroups of $\operatorname{Aut}(X)$ with respect to D coincide with the root subgroups of $\operatorname{Aut}(X)$ with respect to T. In particular, all root subgroups of $\operatorname{Aut}(X)$ with respect to D have different weights.

The difficulty now is to prove that $\varphi(D) \subset \operatorname{Aut}(Y)$ is a closed algebraic subtorus of dimension $n-1$ and all root subgroups of $\operatorname{Aut}(Y)$ with respect to $\varphi(D)$ have different weights. This implies that $\mathcal{O}(Y)^{\varphi(U)}$ is multiplicity free $\varphi(T)$-module and hence $\operatorname{dim} Y \leq \operatorname{dim} \varphi(D)+1=n$ which implies that Y is toric.

End of the proof

Why $U \subset \operatorname{Aut}(X)$ and $\varphi(U) \subset \operatorname{Aut}(Y)$ have the same weight?

This is tricky and I will skip the explanation.

End of the proof

Why $U \subset \operatorname{Aut}(X)$ and $\varphi(U) \subset \operatorname{Aut}(Y)$ have the same weight?

This is tricky and I will skip the explanation.

Hence, the set of weights of root subgroups of $\operatorname{Aut}(X)$ with respect to T coincides with the set of weights of root subgroups of $\operatorname{Aut}(Y)$ with respect to $\varphi(T)$.
Combinatorial work shows that the polyhedral cones that determine X and Y are the same. Therefore, $Y \simeq X$.

Further work

(1) Prove some analog (a weaker version) of Theorem A for the group of birational transformations and show that a rational variety is detemined (up to birational equivalence) by its group of birational transformations;
(2) Characterize Borel subgroups of $\operatorname{Aut}(X)$ and of $\operatorname{Bir}(X)$. Find out more structural results for $\operatorname{Aut}(X)$ and for $\operatorname{Bir}(X)$.

THANK YOU FOR YOUR ATTENTION

