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2. Introduction

In 1872 Felix Klein published his inauguration paper named Vergleichende
Betrachtungen ueber neuere geometrische Forschungen (see [Kle93]) for his profes-
sorship at the University of Erlangen (Bavaria, Germany). This paper acquired
world-wide fame among mathematicians under the name of Erlangen Programm.
Klein proposed that group theory, a branch of mathematics that uses algebraic
methods to abstract the idea of symmetry, was the most useful way of organiz-
ing geometrical knowledge. One can translate it into the modern mathematical
language as follows.

Study of geometrical objects via their transformation (automorphism,
birational transformation etc.) groups.

This approach was very fruitful in many areas of mathematics, for example, to
study manifolds via their diffeomorphism group, field extensions via their Galois
group, algebraic varieties via their automorphisms.

In particular, Richard P. Filipkewicz proved that a real connected manifold is
determined by its group of diffeomorphism i.e. if M and N are real connected mani-
folds of class Ck and Cj respectively, then an isomorphism φ : Diffk(M)→ Diffj(N)
of abstract groups implies equality j = k and that there exists a diffeomorphism
ψ : M → N of class Ck.

1



2 GROUPS OF AUTOMORPHISMS OF SOME AFFINE VARIETIES

In this thesis, we focus on the study of affine varieties via their automorphisms.
Shafarevich introduced the structure of an infinite dimensional variety on the au-
tomorphism group Aut(An), a so-called ind-variety (see Section 3). The aim of this
thesis is: Study the automorphism group of affine varieties within the framework
of ind-varieties.

The thesis is organized as follows. In Section 3 we introduce the basic concepts
and notions that we will need. In Section 4 we give an overview of the results in
the articles of this thesis. Thereafter we list all these articles. We work over the
field of complex numbers C (but all results hold true over algebraically closed field
of characteristic zero) if not explicitely stated otherwise.

3. Fundamentals

3.1. Ind-groups and their Lie algebras. In [Sha66] Shafarevich introduced
the notion of an infinite dimensional algebraic group or shortly ind-group (see also
[Kum02]). It was introduced in order to study the automorphism group Aut(An)
of the affine n-space. Recently, Furter-Kraft and Dubouloz independently
showed that Aut(X) has the structure of an ind-group for any affine variety X.

Definition 1. An ind-variety is a set X together with a filtration X1 ⊂ X2 ⊂ ...
with the following properties

(a) X =
⋃∞
i=1Xi;

(b) each Xn has the structure of an algebraic variety;
(c) the inclusion Xn ⊂ Xn+1 is a closed immersion.
In this case we denote X = lim

−→
Xi. In case each Xi is affine we call X an affine

ind-variety. We endow each ind-variety X = lim
−→

Xi with the following so-called

ind-topology : a subset A ⊂ X is called closed (resp. open) if and only if A ∩Xi is
closed (resp. open) in Xi for all i.

Example 1. (1) Any (finite-dimensional) variety X is of course canonically an
ind-variety, where we take each Xn = X.

(2) If X and Y are ind-varieties, then X×Y is canonically an ind-variety, where
we define the filtration by

(X × Y )n = Xn × Yn,
and we put the product variety structure on Xn × Yn.

(3) A∞ = {(a1, a2, a3, ...) : ai ∈ C and all but finitely many a′is are zero} is an
ind-variety under the filtration: A1 ⊂ A2 ⊂ A3 ⊂ ..., where An ⊂ A∞ is the set
of all the sequences with an+1 = an+2 = ... = 0, which can be identified with the
n-dimensional affine space.

(4) Any countable infinite set S = {x0, x1, ...} is an ind-variety under the filtra-
tion Sn = {x0, x1, ..., xn} which has the structure of a variety.

(5) Any vector space V of countable dimension over the field C is an affine ind-
variety. Take a basis {ei}i≥1 of V . This gives rise to a C-linear isomorphism A∞ 7→∑
aiei. By transporting the ind-variety structure from A∞ via this isomorphism,

we get an (affine) ind-variety structure on V . It is easy to see that a different choice
of basis of V gives an equivalent ind-variety structure on V .

Definition 2. A morphism between ind-varieties V =
⋃
k Vk and W =

⋃
mWm is

a map φ : V →W such that for any k there is an m such that φ(Vk) ⊂Wm and the
induced map Vk →Wm is a morphism of varieties. Isomorphism of ind-varieties as



GROUPS OF AUTOMORPHISMS OF SOME AFFINE VARIETIES 3

well as products of ind-varieties are defined in the usual way. This allows to define
an ind-group as an ind-variety G with a group structure such that multiplication
G × G → G : (g, h) 7→ g · h, and taking the inverse G → G : g → g−1, are both
morphisms.

In a similar way we define the notion of ind-semigroup. Similarly as Aut(X)
is an ind-group, the semigroup of endomorphisms End(X) and the semigroup of
dominant maps Dom(X) have the structures of an ind-semigroups for any affine
variety X.

Definition 3. For any affine ind-variety X = lim
−→

Xi, the morphisms X → A1 are

the elements of lim
←−
O(Xi). We call these morphisms the regular functions on X

and we denote O(X) := lim
←−
O(Xi).

A closed subgroup of an ind-group G = lim
−→

Gi is called algebraic if it is contained

in some Gi. We call an element g ∈ G algebraic if the closure of the group generated
by g is an algebraic subgroup of G.

Definition 4. A map f : X → Y of ind-varieties is called a closed embedding, or
equivalently, a closed immersion, if for any n there exists m(n) such that f(Xn) ⊂
Ym(n) and f |Xn : Xn → Ym(n) is a closed embedding of varieties, f(X) is closed in
Y and moreover, f : Xn → f(Xn) is an isomorphism of varieties.

An ind-variety X is called irreducible if the underlying topological space is irre-
ducible, i.e. X is not the union of two proper closed subsets. Similarly, X is called
connected if the underlying topological space is connected.

Definition 5. Let X be an ind-variety with filtration (Xn). For any x ∈ X, define
the Zariski tangent space Tx(X) of X at x by

Tx(X) = lim
−→

Tx(Xn),

where Tx(Xn) is the Zariski tangent space of Xn at x. Note that x ∈ Xn for all
large enough n.

A morphism f : X → Y induces a linear map (df)x : Tx(X) → Tf(x)(Y ), for
any x ∈ X, called the differential of f at x. Moreover, this satisfies the chain rule:
(d(g ◦ f))x = (dg)f(x) ◦ (df)x, for a morphism g : Y → Z. Hence, an isomorphism
f : X → Y of ind-varieties induces an isomorphism (df)x : Tx(X) → Tf(x)(Y ), for
any x ∈ X.

Proposition 1. [Kum02, Proposition 4.2.2] For an ind-group H, the Zariski space
Te(H) at the identity element e is endowed with a natural structure of a Lie algebra
which will be denoted by LieH.

Moreover, if f : G → H is a group morphism between ind-groups, then the
derivative (df)e : LieG→ LieH is a Lie algebra homomorphism.

As in the case of algebraic groups, an ind-group G is connected if and only if G
is irreducible (see [Kum02, Lemma 4.2.5]).

Definition 6. Let G be an ind-group. An algebraic element g ∈ G is called
unipotent if it is either trivial or if the closure of the group 〈g〉 generated by g is
isomorphic to the additive group Ga := C+. The subset of all unipotent elements
of G is denoted by Gu.
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3.2. Automorphisms of affine varieties. By an endomorphism of the affine
n-space An = Cn we mean a map of the following form

f : An → An, a→ f(a) = (f1(a1, ..., an), ..., fn(a1, ..., an)),

where f1, ..., fn ∈ C[x1, ..., xn] are polynomials and we use the notation f = (f1, ...,
fn). More generally, suppose X and Y are closed subvarieties of An and Am re-
spectively. A regular map f from X to Y has the form f = (f1, ..., fm) where the fi
are in the coordinate ring O(X) = C[x1, ..., xn]/I where I is the ideal which defines
X, such that the image f(X) lies in Y .

An automorphism of X is an endomorphism that admits an inverse which is
an endomorphism too. We denote by Aut(X) the group of automorphisms and
by End(X) the semigroup of endomorphisms of X. A special case is X ∼= An.
One defines the degree of f ∈ End(An) as deg f := maxi deg fi. By Affn we
denote the group of affine transformations of An and by Jn the group of triangu-
lar automorphisms (i.e. the automorphisms (g1, ..., gn), where gi = gi(xi, ..., xn)
depends only on xi, ..., xn for each i). Note that (g1, ..., gn) ∈ Jn if and only if
gi = aixi + pi(xi+1, ..., xn) for all i, where ai ∈ C∗ and pi ∈ C[xi+1, ..., xn]. This
shows that Jn is, as an ind-variety, isomorphic to

(C∗)n × (C⊕ C[xn]⊕ C[xn−1, xn]⊕ · · · ⊕ C[x2, ..., xn]).

The group TAut(An) of tame automorphisms is the subgroup of Aut(An) generated
by Affn and Jn. If n = 2, any automorphism of An is tame. Moreover, Aut(A2) is
an amalgamated product of Aff2 and J2 with amalgamated subgroup Aff2 ∩ J2.

Recently Jean-Philippe Furter and Hanspeter Kraft showed that Aut(X)
has a natural structure of an affine ind-variety for any affine variety X. To show it
we start with the following Lemma.

Lemma 1. ([St13, Lemma 3.8]). Let X and Y be affine varieties. Then the set of
morphisms Mor(X,Y ) from X to Y has a canonical structure of an ind-variety.

Proof. Let Y ⊂ An and denote by I ⊂ O(An) the vanishing ideal of Y . The
countable dimensional vector space Mor(X,An) = O(X)n has the natural structure
of an ind-variety by Example 1. It follows, that

Mor(X,Y ) = {f ∈ Mor(X,An)| φ ◦ f = 0 for all φ ∈ I}
is closed in Mor(X,An) and then it has the structure of an ind-variety. One can
prove that the ind-structure on Mor(X,Y ) does not depend on the choice of the
embedding Y ⊂ An. �

We state without proof the next Lemma.

Lemma 2. Let X, Y and Z be affine varieties. Then there is a bijection

Mor(X × Y, Z)←→ Mor(X,Mor(Y,Z))

f 7−→ (x 7→ (y 7→ f(x, y)))

Moreover, the bijection is an isomorphism of ind-varieties.

Proposition 2. ([St13, Proposition 3.7]). Let X be an affine variety. Then Aut(X)
has the structure of an ind-group, such that for any algebraic group G, the G-action
G×X → X corresponds to the ind-group homomorphism G→ Aut(X).
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Proof. Take any closed embedding X ⊂ An and let p : End(An) � Mor(X,An) be
the canonical C-linear projection. Thus Mor(X,An) = lim

−→
p(End(An)i) is filtrated

by finite dimensional subspaces and End(X) = lim
−→

End(X)i is an ind-variety, where

End(X)i = End(X)∩p(End(An)i). From this construction it follows that End(X)×
End(X) → End(X), (f, g) 7→ f ◦ g is a morphism and hence End(X) is an affine
ind-semigroup. The set

Aut(X) = {(f, h) ∈ End(X)× End(X)|f ◦ h = h ◦ f = id}

is closed in End(X) × End(X) and then it has the structure of an ind-variety. As
End(X) is an ind-semigroup, the composition

Aut(X)×Aut(X)→ Aut(X), ((f1, h1), (f2, h2)) 7→ (f1 ◦ f2, h2 ◦ h1)

is a morphism and taking inverses

Aut(X)→ Aut(X), (f, h) 7→ (h, f).

is a morphism too. Hence, Aut(X) is an affine ind-group.
LetG be an algebraic group. If ρ : G×X → X is a morphism, thenG→ End(X),

g 7→ ρg is a morphism by Lemma 2, where ρg : X → X is defined by ρg(x) := ρ(g, x).
Hence G → End(X) × End(X), g 7→ (ρg, ρg−1) is a morphism and it induces a
homomorphism of ind-groups G → Aut(X). Vice versa, if G → Aut(X) is a
homomorphism of ind-groups, then

G→ Aut(X) ⊂ End(X)× End(X)→ End(X)

is a morphism and then G×X → X is a G-action by Lemma 2. �

Remark 1. In fact, Furter and Kraft showed that the ind-group structure
described above is the unique ind-structure on Aut(X) which satisfies the so-called
universal property.

Remark 2. We define the locally closed affine ind-subvariety Et(An) of End(An)
by the condition that the determinant of the Jacobian matrix jac(f) of f is in C∗.
By the same argument as in the previous proof Aut(An) is a closed subvariety of
Et(An).

Remark 3. Note that the group of birational transformations Bir(Pn) of projective
n-space Pn does not admit a structure of an ind-group (see [BF13]).

Example 2. The automorphism group Aut(An) of the affine n-space has the
structure of an affine ind-group (due to Shafarevich, see [Sha66] and [Sha81]):
Aut(An) = lim

−→
Aut(An)i, where Aut(An)i is the variety of those g ∈ Aut(An) which

have deg g ≤ i. The subgroup Affn ⊂ Aut(An) is algebraic and Jn ⊂ Aut(An) is the
closed subgroup consisting of algebraic elements, but it is not algebraic itself. More-
over, Jn has the filtration by closed algebraic subgroups. Similarly one turns the en-
domorphisms End(An) into an affine ind-monoid through End(An) = lim

−→
End(An)i,

where End(An)i = {f ∈ End(An)|deg f ≤ i}.

3.3. Group actions and vector fields.



6 GROUPS OF AUTOMORPHISMS OF SOME AFFINE VARIETIES

3.3.1. Algebraic group actions. Let G be an algebraic group which acts on an affine
variety X. Then we get a canonical anti-homomorphism of Lie algebras ξ : LieG→
Vec(X) = Der(O(X)), A 7→ ξA, where the vector field ξA is defined in the following
way (see [Kra11, II.4.4]). Consider the orbit map µx : G→ X, g 7→ gx, and set

(ξA)x := (dµx)e(A).

We say that ν ∈ Vec(X) is a locally finite vector field if for any f ∈ O(X), the
vector space generated by {νk(f)|k ∈ N} is a finite-dimensional vector subspace of
O(X). A vector field ν ∈ Vec(X) is called locally nilpotent if for any f ∈ O(X)
there exist k ∈ N such that νk(f) = 0.

3.3.2. Unipotent elements of Aut(X). Let X be an irreducible affine variety. One
has a bijective correspondence

Aut(X)u = {unipotent elements in Aut(X)} ←→ {Ga − actions on X}
given in the following way: if u ∈ Aut(X) is unipotent, then Ga = 〈u〉 ⊂ Aut(X)
and we get a Ga-action on X by the homomorphism Ga → Aut(X) that sends 1 to
u. Conversely, if ρ : Ga → Aut(X) is a homomorphism, then u := ρ(1) ∈ Aut(X)
is unipotent. Additionally, one has a bijective correspondence

{Ga − actions on X} ←→ {locally nilpotent vector fields on X}
which is given in the following way: if ρ : Ga × X → X is a Ga-action, then the
comorphism ρ∗ : O(X) → O(X)[t] induces a derivation D : O(X) → O(X) and
the corresponding vector field is locally nilpotent. Vice versa, let ν be a locally
nilpotent vector field on X, then it induces a derivation D : O(X) → O(X),
D(f) := dρ∗(f)|t=0. Therefore, D induces the map Ga → Aut(X), t 7→ Exp(tD)
which defines a Ga-action on X, where the comorphism of Exp(tD) is

D : O(X)→ O(X), f 7→
∞∑

i=0

ti

i!
Di(f).

For more details on the theory of locally nilpotent vector fields see [Fre06].
Let u ∈ Aut(X) be unipotent. We denote byO(X)u = {f(x) ∈ O(X)|f(u−1x) =

f(x)} the invariant ring of u. If ν is the locally nilpotent vector field that corre-
sponds to u, we have O(X)u = Ker ν. Note that if ν is a locally nilpotent vector
field, then fν is also locally nilpotent for any f ∈ Ker ν = O(X)u.

Definition 7. Let u ∈ Aut(X) be unipotent and let ν be the corresponding locally
nilpotent vector field. For each f ∈ O(X)u we denote by f · u the unipotent
automorphism of X corresponding to the locally nilpotent derivation fν and we
call f · u a modification of u.

The most basic unipotent elements in Aut(An) are the translations, i.e. automor-
phisms of the form (x1+c1, ..., xn+cn) for some (c1, ..., cn) ∈ Cn. A modification of
(x1, x2, ..., xn + 1) is an automorphism of the form (x1, x2, ..., xn + f(x1, ..., xn−1))
for some polynomial f(x1, ..., xn−1) which depends only on x1, ..., xn−1.

3.3.3. Tangent space of End(X) and Aut(X). For any x ∈ X we have a morphism
µx : End(X) → X, φ 7→ φ(x), with differential dµx : Te End(X) → TxX, where
e := idX is the identity. Thus, for any H ∈ Te End(X), we obtain a vector field ξH
defined by (ξH)x = dµx(H).

The following result and its proof is due to Furter-Kraft.
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Proposition 3. The tangent space Te End(X) is canonically isomorphic to the
vector fields Vec(X), where the isomorphism is given by H 7→ ξH .

Outline of Proof. We choose a closed embedding X ⊂ Cn such that O(X) =
C[x1, ..., xn]/I(X). This defines a closed embedding of ind-varieties End(X) ⊂
Mor(X,Cn), hence Tid(End(X)) ⊂ O(X)n. By definition, (f1, ..., fn) ∈ End(X) if
and only if F (f1, ..., fn) = 0 for all F ∈ I(X). Therefore, we have

H = (h1, ..., hn) ∈ Tid(End(X))⇐⇒ F (x1 + εh1, ..., xn + εhn) = 0 for all F ∈ I(X)

⇐⇒
n∑

i=1

hi
∂F

∂xi
(x1, ..., xn) = 0 for all F ∈ I(X).

The latter means that
∑n
i=1 hi

∂
∂xi

defines a derivation δH of O(X) by setting

δH = hi, and every derivation δ of O(X) arises in this way. Thus, we obtain

an isomorphism Tid(End(X))
∼−→ Der(O(X)) = Vec(X), given by H 7→ δH . Note

that δH , as a vector field, is given by (δH)x = (h1(x), ..., hn(x)) ∈ TxX ∼= Cn.
On the other hand, the morphism µx : End(X)→ X is given by

(f1, ..., fn) 7→ (f1(x), ..., fn(x)) ∈ X ⊂ Cn.
It follows that

µx(x1 + εh1(x), ..., xn + εhn(x)) = x+ ε(h1(x), ..., hn(x))

for H = (h1, ..., hn) ∈ Tid End(X). Hence, (ξH)x = (h1(x), ..., hn(x)) = (δH)x. �

The following result is due to Hanspeter Kraft.

Proposition 4. Let G be an ind-group which acts on affine variety X. Then the
map ξ : LieG → Vec(X), A 7→ ξA, is an anti-homomorphism of Lie algebras. For
G = Aut(X), the map ξ : LieG → Vec(X) is injective, so that Lie Aut(X) can be
considered as a Lie subalgebra of Vec(X).

In the following we will always identify Lie Aut(X) with its image in Vec(X).
Note that Lie Aut(X) contains all locally finite vector fields. Indeed, if δ is a locally
finite vector field of Vec(X), then there exists an algebraic subgroup G of Aut(X)
such that δ ∈ LieG (see [CD03]). On the other hand, it is unknown and it is a very
interesting problem, whether Lie Aut(X) is generated by locally finite vector fields
if Aut(X) is generated by algebraic subgroups.

3.3.4. The case of Aut(An). In this section we are going to compute Lie Aut(An).
The vector fields on An have the following form: Vec(An) = Der(C[x1, ..., xn]) =
{f1∂1 + · · · + fn∂n|fi ∈ C[x1, ..., xn]}, where ∂i := ∂

∂xi
. Recall that the divergence

of a vector field δ =
∑n
i=1 pi

∂
∂xi

is defined by Div δ :=
∑n
i=1

∂pi
∂xi

. We define

Vec0(An) = {δ ∈ Vec(An)|Div δ = 0}.
and

Vecc(An) = {δ ∈ Vec(An)|Div δ ∈ C}.
Note that both Vec0(An) and Vecc(An) are Lie subalgebras of Vec(An) because

Div([ν, µ]) = ν(Divµ)− µ(Div ν),

where ν, µ ∈ Vec(An).
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The following Lemma can be found in [Sha81].

Lemma 3. The Lie algebra Vec0(An) is generated by locally nilpotent vector fields
of the form mi

∂
∂xi

where mi is a monomial in the xj with j 6= i. Moreover, Vec0(An)
is a simple Lie algebra.

Proof. (Hanspeter Kraft) (a) If m = xk11 x
k2
1 · · ·xknn is a monomial we set mi :=

m/xkii , for i = 1, ..., n. Hence,

[xkii
∂

∂xj
,mi

∂

∂xi
] =

∂m

∂xj

∂

∂xi
− ∂m

∂xi

∂

∂xj
,

where j 6= i. It follows that for a given ξ =
∑n
i=1 fi

∂
∂xi
∈ Vec0(An) we can

find a linear combination of the brackets [xkii
∂
∂xj

,mi
∂
∂xi

] which is of the form ξ′ =∑n
i=1,i6=j fi

∂
∂xi
− hj ∂

∂xj
. Then ξ− ξ′ = hj

∂
∂xj

. Since Div(ξ− ξ′) = 0 we see that hj

does not depend on xj , and so hj
∂
∂xj

is a sum of vector fields of the form cjmj
∂
∂xj

,

where cj ∈ C∗.
(b) Let I ⊂ Vec0(An) be a nonzero ideal. If ξ =

∑n
i=1 fi

∂
∂xi
∈ I, then [ ∂

∂xj
, ξ] =

∑n
i=1

∂fi
∂xj

∂
∂xi
∈ I. It follows that ∂

∂xk
∈ I for some k, and so ∂

∂xi
∈ I for all i,

because [xk
∂
∂xi

, ∂
∂xk

] = − ∂
∂xi

. If mi is a monomial which does not depend on xi,

then [mi
∂
∂xi

, ∂
∂xk

] = −∂mi

∂xk

∂
∂xi
∈ I. Hence, I = Vec0(An) by (a). �

Note that Vecc(An) = Vec0(An)⊕CE, where E := x1
∂
∂x1

+ · · ·+xn
∂
∂xn

. In fact,
E is a locally finite vector field.

The following result and its proof is due to Hanspeter Kraft.

Proposition 5. The map ξ induces an anti-isomorphism of Lie algebras

Lie Aut(An)→ Vecc(An) := {δ ∈ Vec(An)|Div δ ∈ C}.

Proof. We note first that by Remark 2, Aut(An) is a closed subvariety of Et(An).
It is not difficult to see that Et(An) is an ind-subvariety of End(An). This shows
that

Lie Aut(An) ⊂ Te Et(An) = Te{f ∈ End(An)| jac(f) ∈ C∗}.
For H = (p1, ..., pn) ∈ End(An) we have jac(id +εH) = 1 + ε

∑
i
∂pi
∂xi

mod ε2, hence

Te Et(An) = Vecc(An). Now it suffices to remark that Vec0(An) is generated by
locally nilpotent vector fields and that E is locally finite. This proves the claim. �

3.4. Lie algebra of Aut(X) and action of Aut(An) on Vec(An).

Theorem 17. Let G be a connected ind-group. If LieG is a simple Lie algebra,
then any homomorphism F : G→ H of ind-groups is either trivial or the kernel is
a discrete subgroup contained in the center of G.

Proof. Let G = ∪Gi. By definition, LieG = ∪TeGi and since LieG is simple,
(dF )e : LieG→ LieH is either trivial or injective. If (dF )e is trivial, the restriction
of F to each Gi is a constant map, therefore F is trivial (because G is connected).
If (dF )e is injective, F has discrete kernel K. Then G acts on K by conjugation.
Since G is connected it follows that K is included into the center Z(G) of G. �



GROUPS OF AUTOMORPHISMS OF SOME AFFINE VARIETIES 9

The Lie algebra of SAut(An) which is isomorphic to Vec0(An) is a simple Lie alge-
bra. But we do not know whether this implies simplicity of the ind-group SAut(An)
i.e. whether there exists a nontrivial closed normal subgroup of SAut(An). More-
over, Kraft recently proved that any nontrivial ind-homomorphism from SAut(An)
to an ind-group H is either trivial or is a closed immersion (see [Kra15, Theorem
1.4]). Note that in [Dan74] (see also [FL10]) it was shown that group SAut(A2) is
not simple as an abstract group.

3.5. Characterization of affine varieties. As we have mentioned in Section
3.2, End(X) and Aut(X) have the structure of an ind-semigroup and an ind-group
respectively for any affine variety X. Recently Hanspeter Kraft showed the
following result.

Proposition 6. Let X, Y be affine varieties. Assume that we have an isomorphism
End(X) ∼= End(Y ) of ind-semigroups. Then X ∼= Y .

Proof. For x ∈ X denote by γx ∈ End(X) the constant map with value x. Then
the map ιX : X → End(X), x 7→ γx, is a closed immersion. In fact, it is clearly a
morphism, and there is a retraction given by the morphism evx0

: End(X) → X,
φ 7→ φ(x0).

Now we remark that the closed subset ιX(X) ⊂ End(X) of constant maps is
characterized by ιX(X) = {φ ∈ End(X)|φ ◦ ψ = φ for all ψ ∈ End(X)}. This
implies that every isomorphism of ind-semigroups τ : End(X)→ End(Y ) defines a
bijective morphism τ |ιX(X) : ιX(X) → ιY (Y ). The claim follows since the inverse

map is given by τ−1|ιY (Y ). �
A generalization of this result can be found in [AK14], where the authors con-

sidered just abstract isomorphism of semigroups of endomorphisms.
On the other hand we can not expect to have such a result if we replace End(X)

by Aut(X) since for most affine varieties X, Aut(X) is finite. Recently, Hanspeter
Kraft proved the following result.

Theorem 18. ([Kra15, Theorem 1.1]). Let Y be a connected affine variety. If
Aut(An) ∼= Aut(Y ) as ind-groups, then Y ∼= An as varieties.

Therefore, the affine n-space is determined by its automorphism group in the
category of connected affine varieties. There are some futher results in this direc-
tion in [Reg15b]. It is of interest to discover more varieties which are determined
by their automorphism groups. Moreover, An is also determined by its special au-
tomorphism group U(An) in the category of connected affine varieties, where by
U(An) we mean the subgroup of Aut(X) generated by all closed subgroups U such
that U ∼= C+. Note that U(X) is not necessarily an ind-group, i.e. U(X) is not
necessarily closed in Aut(X). By an algebraic isomorphism φ : U(X) → U(Y ) we
mean an abstract isomorphism of abstract groups such that the restriction of φ
to any closed one-dimensional unipotent subgroup is an isomorphism of algebraic
groups.

Theorem 19. Let Y be a connected affine variety. If U(An) and U(Y ) are alge-
braically isomorphic, then Y ∼= An as varieties.
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4. Outline of the articles.

4.1. Automorphisms of the Lie Algebra of Vector Fields on Affine n-
Space. In this section we describe the results of the joint paper [KReg15] with
Hanspeter Kraft and give some ideas of the proofs.

The group Aut(An) acts on Vec(An) in the usual way. For φ ∈ Aut(An) and
δ ∈ Vec(An) we define

Ad(φ)δ := φ∗−1 ◦ δ ◦ φ∗,
where we consider δ as a derivation δ : C[x1, ..., xn]→ C[x1, ..., xn] and φ∗ : C[x1, ...,
xn] → C[x1, ..., xn], f 7→ f ◦ φ, is the co-morphism of φ. It is shown in [Kul92]
that Ad: Aut(An) → AutLie(Vec(An)) is an isomorphism, where AutLie(Vec(An))
denotes the group of automorphisms of the Lie algebra Vec(An).

In more geometric terms, considering δ as a section of the tangent bundle TAn =
An × Cn → An , one defines the pull-back of δ by

φ∗(δ) := (dφ)−1 ◦ δ ◦ φ, i.e., φ∗(δ)a = (dφa)−1(δφ(a)) for a ∈ An.

Clearly, φ∗(δ) = Ad(φ−1)δ. However, the second formula above shows the well-
known fact that the pull-back φ∗(δ) of a vector field δ is also defined for an étale
morphism φ : An → An. More precisely, let φ : An → An be an étale morphism.
For any vector field δ ∈ Vec(An) there is a vector field φ∗(δ) ∈ Vec(An) defined
by φ∗(δ)a := (dφ)−1a δφ(a) for a ∈ An. It is uniquely determined by φ∗(δ)φ∗(f) =
φ∗(δf) for f ∈ C[x1, ..., xn]. The map φ∗ : Vec(An) → Vec(An) is an injective
homomorphism of Lie algebras satisfying φ∗(hδ) = φ∗(h)φ∗(δ) for h ∈ C[x1, ..., xn].
Moreover, (η ◦ φ)∗ = φ∗ ◦ η∗.

First, we give a short proof of the fact that AutLie(Vec(C[x1, ..., xn])) = Aut(An)
in [KReg15, Theorem 3.1]. In order to prove this we first note that the map

Ad : Aut(An)→ AutLie(Vec(An))

is injective. To show surjectivity we consider the subgroup S = (C+)n ⊂ Affn of

translations. Then s := LieS = 〈∂x1
, ..., ∂xn

〉. Let θ : Vec(An)
∼−→ Vec(An) be an

isomorphism and θ(s) = u. We show that u is generated by locally nilpotent vector
fields too. Therefore, u is a Lie algebra of some unipotent subgroup U ⊂ Aut(An).

Because centVec(An)(s) = s it follows that centVec(An)(u) = u. By using this, we

show that the orbit maps µS : S
∼−→ An and µU : U

∼−→ An are isomorphisms.
Then one sees that φ := µS ◦ψ ◦µ−1U has the property that φ◦u◦φ−1 = ψ(u) for all
u ∈ U . Hence, the automorphism θ′ := Ad(φ) ◦ θ ∈ AutLie(Vec(An)) sends Lie(S)
isomorphically onto itself. Then, one proves that there is an α ∈ Affn such that
Ad(α) ◦ θ′ is the identity on Lie(Affn). From here we finish the proof by showing
that in case θ is the identity on Lie(Affn), it is the identity on Vec(An).

The aim of [KReg15] is to prove the following result about the automorphism
groups of Lie algebras Vec0(An) and Vecc(An).

Theorem 20. [KReg15, Main Theorem] There are canonical isomorphisms of
groups

Aut(An) ∼= AutLie(Vec(An)) ∼= AutLie(Vecc(An)) ∼= AutLie(Vec0(An)).

Remark 4. (a) The theorem above holds over any field K of characteristic zero.
(b) Hanspeter Kraft showed that the groups in Theorem 20 have a natural

structure of ind-groups and that the maps are all isomorphisms of ind-groups.
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To prove Theorem 20 it is enough to show that Aut(Vec0(An)) ∼= Aut(An). In
order to do so, we first show that the canonical map

Ad : Aut(An)→ AutLie(Vec0(An))(1)

is injective. Therefore, it is enough to show surjectivity of Ad.
Recall that a Darboux polynomial of δ is a nonconstant polynomial f ∈ C[x1, ..., xn]

such that δ(f) = hf for some h ∈ C[x1, ..., xn].
If n = 1 it is easy to see that Ad from (1) is surjective, hence we can assume that

n ≥ 2. Let θ be an automorphism of the Lie algebra Vec0(An). Put δi := θ(∂xi
).

Then the vector fields δ1, ..., δn are pairwise commuting and C-linearly independent.
Since ∂xi

acts locally nilpotently on Vec0(An), the same holds for δi.
In the following we will use vector fields with rational coefficients:

Vecrat(An) := C(x1, ..., xn)⊗C[x1,...,xn] Vec(An) =
n⊕

i=1

C(x1, ..., xn)∂xi
.

We first show that the δ1, ..., δn do not have a common Darboux polynomial.
Hence one shows that there is an étale morphism φ : An → An with δi = φ∗(∂xi

)
for all i. Then the composition θ′ := θ−1 ◦ φ∗ : Vec0(An) → Vec0(An) is an
injective homomorphism of Lie algebras and θ′(∂xi) = ∂xi . Hence, Lemma 5.4 from
[KReg15] implies that θ′ = Ad(s) = (s−1)∗, where s ∈ Aut(An) is a translation,
hence θ = (φ ◦ s)∗. Now we show that ψ := φ ◦ s is an automorphism of An, and so
θ = Ad(ψ−1) as claimed.

As a consequence of Theorem 20 we get the following result which is due to
Kulikov, (see [Kul92, Theorem 4] cf. [KReg15, Corollary 4.4]).

Corollary 1. If every injective endomorphism of the Lie algebra Vec(An) is an
automorphism, then the Jacobian Conjecture holds in dimension n.

Remark 5. In fact, one can show that if every injective endomorphism of the
Lie algebra Vec0(An) is an automorphism, then the Jacobian Conjecture holds in
dimension n.

Remark 6. It was proved by Belov-Kanel and Yu that every automorphism
of Aut(An) as an ind-group is inner (see [BYu12]). Using Theorem 20 and Re-
mark 4(b), one can give a short proof of this and extend it to the closed subgroup
SAut(An) ⊂ Aut(An) of automorphisms with Jacobian determinant equal to 1.

4.2. Lie subalgebras of plane vector fields and the jacobian conjecture.
In this section we describe the main results of the paper [Reg15a] and indicate some
ideas of the proofs.

It is a well-known consequence of the amalgamated product structure of Aut(A2)
that every reductive subgroup G ⊂ Aut(A2) is conjugate to a subgroup of GL2(C) ⊂
Aut(A2), i.e. there is a ψ ∈ Aut(A2) such that ψGψ−1 ⊂ GL2(C) ([Kam79], cf.
[Kr96]). The “Linearization Problem” asks whether the same holds for Aut(An).
It was shown by Schwarz in [Sch89] that this is not the case in dimensions n ≥ 4
(cf. [Kn91]).

In [Reg15a] we consider the analogue of the Linearization Problem for Lie alge-
bras. By Proposition 5 the Lie algebra Lie(Aut(A2)) is canonically isomorphic to
the Lie algebra Vecc(A2). The Lie subalgebra

L := C(x2∂x − 2xy∂y)⊕ C(x∂x − y∂y)⊕ C∂x ⊂ Vec0(A2) ⊂ Vecc(A2),
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where ∂x := ∂
∂x and ∂y := ∂

∂y , is isomorphic to sl2, but not conjugate to the standard

sl2 := 〈x∂y, y∂x, x∂x − y∂y〉 ⊂ Vecc(A2) under Aut(A2) (see [Reg15a, Remark
4.2]). This shows that the Linearization Problem for Lie Aut(A2) does not hold.
However, for some other Lie subalgebras of Vecc(A2) the situation is different. Let
Aff2(C) ⊂ Aut(A2) be the group of affine transformations and SAff2(C) ⊂ Aff2(C)
the subgroup of affine transformations with determinant equal to 1, and denote
by aff2 = 〈∂x, ∂y, x∂x, y∂y, x∂y, y∂x〉, respectively saff2 = 〈∂x, ∂y, x∂y, y∂x, x∂x −
y∂y〉 their Lie algebras. The first result we prove is the following (see [Reg15a,
Proposition 3.6]). For f ∈ C[x, y] we set Df := fx∂y − fy∂x ∈ Vecc(A2). Note that
every vector field with divergence 0 has this form.

Theorem 21. Let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to saff2. Then
there is an étale map φ : A2 → A2 such that L = φ∗(saff2). More precisely, if
(Df , Dg) is a basis of the solvable radical of L, then

L = 〈Df , Dg, Df2 , Dg2 , Dfg〉,
and one can take φ = (f, g).

In order to prove this result we introduce the Poisson algebra P as the Lie
algebra with underlying vector space C[x, y] and with Lie bracket {f, g} := j(f, g) =
fxgy − fygx for f, g ∈ P .

There is a canonical surjective homomorphism of Lie algebras µ : P → Vec0(A2),
h → Dh := hx∂y − hy∂x, with kernel kerµ = C. For f, g ∈ C[x, y] such that
{f, g} ∈ C∗ we put

Pf,g := 〈1, f, g, f2, fg, g2〉 ⊂ P.
This Lie algebra is isomorphic to P≤2 := 〈1, x, y, x2, xy, y2〉. Clearly, Pf,g = Pf1,g1
if 〈1, f, g〉 = 〈1, f1, g1〉. Denoting by radL the solvable radical of the Lie algebra L
we get radPf,g = 〈1, f, g〉 and Pf,g/ radPf,g ∼= sl2. Then we show (see [KReg15,
Proposition 2.8]) that each subalgebra of P isomorphic to P≤2 is equal to Pf,g for
some f, g ∈ C[x, y], where {f, g} ∈ C∗. The proof is based on the fact that we
can easily compute the centralizer centP (f) of f ∈ P and then by using defining
relations of P≤2 conclude the result.

Now let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to saff2. Then L =
[L,L] ⊂ [Vecc(An),Vecc(An)] = Vec0(An). Hence, we show that it suffices to
check that Q := µ−1(L) ⊂ P is isomorphic to P≤2. From this one shows that

each subalgebra of Vec0(A2) isomorphic to saff2 = µ(P≤2) is equal to Lf,g =
〈Df , Dg, Df2 , Dg2 , Dfg〉 = φ∗(saff2), where φ = (f, g) : A2 → A2 is an étale map.

We can extend Theorem 21 to the following result.

Theorem 22. Let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to aff2. Then there
is an étale map φ : A2 → A2 such that L = φ∗(aff2). More precisely, if (Df , Dg) is
a basis of the solvable radical of [L,L], then

L = 〈Df , Dg, fDf , gDg, fDg, gDf 〉,
and one can take φ = (f, g).

Let L ⊂ Vecc(A2) be isomorphic to aff2. Then L = [L,L] ⊕ CD for some
D ∈ Vecc(An) and [L,L] ∼= saff2 ⊂ [Vecc(An),Vecc(An)] = Vec0(An). Therefore,
L = φ∗(saff2)⊕ CD for some étale map φ : A2 → A2. We claim that φ∗(aff2) = L.
To show this we first note that φ∗(aff2) = Lf,g ⊕ CE, where E is the image of the

Euler element of aff2. Since Vecc(A2) = Vec0(A2) ⊕ CD′ for any D′ ∈ Vecc(A2)
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with DivD′ 6= 0, we can write D = aE + F with some a ∈ C∗ and F ∈ Vec0(A2)
i.e., F = Dh for some h ∈ C[x, y]. By construction, F = D − aE commutes with
M := 〈Df2 , Dg2 , Dfg〉 ∼= sl2. Hence, we get {h, f2} = c, where c ∈ C. Thus
c = {h, f2} = 2f{h, f} which implies that {h, f} = 0. Similarly, we find {h, g} = 0,
hence it is not difficult to see that h ∈ C and so Dh = 0 which implies D = aE and
the proof follows.

As a consequence of the classification above, we obtain the next result (see
[Reg15a, Theorem 4.1, Corollary 4.4]). Recall that a Lie subalgebra of Vec(A2) is
algebraic if it acts locally finitely on Vec(A2).

Theorem 23. The following statements are equivalent:
(i) The Jacobian Conjecture holds in dimension 2;
(ii) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to saff2 are conjugate under Aut(A2);
(iii) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are conjugate under Aut(A2);
(iv) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are algebraic;
(v) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to saff2 are algebraic.

The implication (i) ⇒ (ii) is easy and follows from Theorem 21. To show the
implication (ii) ⇒ (iii) we consider a Lie subalgebra L ⊂ Vecc(A2) isomorphic to
aff2, and set L′ := [L,L] ∼= saff2. By (ii) there is an automorphism φ ∈ Aut(A2)
such that L′ = φ∗(saff2). It follows that φ∗(aff2) = L since L is determined by
rad(L′) as a Lie subalgebra, by [Reg15a, Proposition 3.9].

To show the implication (iii)⇒ (iv) we consider a Lie subalgebra L ⊂ Vecc(A2)
isomorphic to aff2. Then by (iii) L = φ∗(aff2) for some φ ∈ Aut(An). Hence,
L = Lieφ(Aff2(C)) and the claim follows. The implication (iv)⇒ (v) one can show
by using the fact that saff2 = [aff2, aff2].

Assume (v) holds. Then any L ⊂ Vecc(A2) isomorphic to saff2 is equal to LieG,
where SAff(C) ∼= G ⊂ Aut(A2). Since there is a subgroup H of G isomorphic
to SL2(C), we show that (i) follows from the fact that all subgroups of Aut(A2)
isomorphic to SL2(C) are conjugate.

4.3. Characterization of n-dimensional SLn-varieties. In this section we give
the main results of the paper [Reg15b] and some ideas of the proofs.

In the joint paper [KRZ15] we show that for n 3 a normal affine SLn-variety
of dimension n is isomorphic to a quotient And := Cn/µd where the cyclic group
µd := {ξ ∈ C∗|ξd = 1} acts by scalar multiplication on Cn. For n = 2 there are two
more cases, namely SL2 /T and SL 2/N where T ⊂ SL2 is the torus of the diagonal
matrices and N = N(T ) is the normalizer of T . The main result of the paper
[Reg15b] shows that a normal n- dimensional affine SLn-variety is determined by
its automorphism group. More precisely, we have the following result. Theorem
11. Let X be a normal affine SLn-variety of dimension n, i.e. X ∼= And , SL2 /T or
SL2 /N , and let Y be any normal affine variety. If Aut(Y ) is isomorphic to Aut(X)
as ind-groups, then Y is isomorphic to X as varieties. Theorem 11 is a special case
of the next theorem where we include the case of a non-normal irreducible Y . The
coordinate ring of And is given by

O(And ) = C⊕ C[x1, · · · , xn]kd

If d ≥ 2, then 0 ∈ And is an isolated singularity and so every automorphism of And
fixes 0. This implies that the non-normal varieties And,s, s ≥ 2, with coordinate ring

O(And,s) = C⊕ C[x1, ..., xn]kd
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and normalization η : And → And,s, have the same automorphism group as And . Here
is the main result.

Theorem 24. Let Y be an irreducible affine variety. (a) If Aut(Y ) ∼= Aut(And ) as
ind-groups, for some n1, d2, then Y ∼= And,s for some s ≥ 1.

(b) If Aut(Y ) ∼= Aut(SL 2/T ) as ind-groups, then Y ∼= SL2 /T as varieties, and
the same holds for SL 2/N .

We also have some extensions of these results for the special au- tomorphism
group U(X) which we will formulate below.

In this paper we show a similar result as in Theorem 18 for a normal irreducible
affine n-dimensional SLn-variety X. It is shown in [KRZ15] that in case n ≥ 3 any
such X is isomorphic to Ad i.e. to the quotient of Cn by a cyclic group µd = {ξ ∈
C∗|ξd = 1}, d ≥ 1, where the action is given by ξ ·(x1, ..., xn) = (ξx1, ..., ξxn). Later
on we consider only the case d > 1. In case n = 2, X can only be isomorphic to
SL2 /T , SL2 /N(T ) or 2-dimensional C2/µd (see [Reg15b, Lemma 5] cf. [Pop73]),
where T is the standard subtorus of SL2 and N(T ) denotes the normalizer of T .

The main result of this paper shows that any normal irreducible affine n-dimensio-
nal SLn-variety is determined by its automorphism group in the category of normal
affine irreducible varieties.

Theorem 25. Let X = SL2 /T, SL2 /N(T ) or Ad and Y be an irreducible normal
affine variety. If Aut(Y ) ∼= Aut(X) as ind-groups, then Y ∼= X as varieties.

In fact, Theorem 25 is a particular case of Theorem 26.
In case Y is not necessarily normal, the situation changes since Aut(Ad) is canon-

ically isomorphic to Aut(Asd) for any s ∈ N, where Asd is a variety with a ring of
regular functions O(Asd) = C ⊕⊕∞k=s C[x1, ..., xn]dk, where C[x1, ..., xn]dk denotes
the homogeneous polynomials of degree dk.

Theorem 26. Let Y be an irreducible affine variety.
(a) if Aut(Y ) ∼= Aut(Ad) as ind-groups, then Y ∼= Asd for some s ∈ N,
(b) if X ∼= SL2 /T or X ∼= SL2 /N(T ) and Aut(Y ) ∼= Aut(X), then Y ∼= X.

Theorem 26 follows from Theorem 28 if X is different from SL2 /T , SL2 /N(T ),
C2/µ2 and C2/µ4. By comparing weights of root subgroups of the automorphisms
groups of mentioned varieties with respect to standard subtori, we see that SL2 /T
can only be isomorphic to C2/µ2 and SL2 /N(T ) can only be isomorphic to C2/µ4.
To distinguish SL2 /T from C2/µ2 by their automorphism groups we remark that
C2/µd admits a faithfull action of 2-dimensional torus and SL2 /T does not. Anal-
ogously, we distinguish SL2 /N(T ) from C2/µ4 by their automorphism groups.

Note that an isomorphism φ : Aut(X) → Aut(Y ) of ind-groups induces an
algebraic isomorphism φu : U(X) → U(Y ). In case U(X) and U(Y ) are closed
subgroups of Aut(X) and Aut(Y ) respecively, φu is an isomorphism of ind-groups.

Theorem 25 is extends to the following result.

Theorem 27. Let Y be an irreducible affine normal variety.
(a) U(A2

2) ∼= U(SL2 /T ). Moreover, if U(A2
2) ∼= U(Y ), then Y is isomorphic

either to A2
2 or to SL2 /T ,

(b) U(A2
4) ∼= U(SL2 /N(T )). Moreover, if U(A2

4) ∼= U(Y ), then Y is isomorphic
either to A2

4 or to SL2 /N(T ),
(c) Let X be isomorphic to A2

d, SL2 /T or to SL2 /N(T ) except A2
4 and A2

2 and
U(X) ∼= U(Y ), then Y ∼= X.
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If we skip the condition of normality on Y , we get the following result.

Theorem 28. Let X = Ad, SL2 /T or SL2 /N(T ) and Y be an irreducible affine
variety. Let also U(Y ) and U(X) are algebraically isomorphic. Then

(a) if n = 2 and X = A2 or SL2 /T , then Y ∼= As2 for some s ∈ N or Y ∼= SL2 /T ,
(b) if n = 2 and X = A4 or SL2 /N(T ), then Y ∼= As4 for some s ∈ N or

Y ∼= SL2 /N(T ),
(c) otherwise, normalization of Y is isomorphic to X and moreover, Y ∼= Asd for

some s ∈ N.

To prove this theorem, first, we show that all tori of maximal dimension U(X)
are congugate, where X is as in Theorem 28. Then by comparing weights of root
subgroups of U(X) and U(Y ) with respect to standard subtori we conclude the
result.

4.4. Groups of automorphisms of Danielewski surfaces. In [LR15] we con-
sider Danielewski surfaces Dp = {(x, y, z) ∈ C3|xy = p(z)}, where p(z) ∈ C[z] is
a polynomial of degree ≥ 2 with no multiple roots. The letter implies that Dp is
smooth. As an example, we have SL2 /T ∼= V (xy − z2 + z) = Dz(z−1).

Let X be an affine variety. Let us denote by µ2 the cyclic group of order 2, which
acts on C2 in the following way: ξ · (x, y) = (ξx, ξy), where ξ ∈ µ2. In [Reg15b,
Proposition 10] it is shown that there is an abstract isomorphism φ : U(SL2 /T )→
U(C2/µ2) such that the restriction of φ to any algebraic subgroup U ∼= C+ is
an isomorphism of algebraic groups. Note that U(C2/µ2) is a closed subgroup of
Aut(C2/µ2) (see [Reg15b, Proposition 10]) and U(SL2 /T ) = Aut0(SL2 /T ) is a
closed subgroup of Aut(SL2 /T ). Hence, U(SL2 /T ) and U(C2/µ2) are ind-groups.

Theorem 29. The ind-groups U(SL2 /T ) and U(C2/µ2) are not isomorphic.

To prove this we introduce the Lie subalgebra Liealg U(C2/µ2) of Vec(C2/µ2)
generated by locally nilpotent vector fields on C2/µ2. By using the fact that C2/µ2

has an isolated singular point, we show that Liealg U(C2/µ2) is not a simple Lie

algebra. On the other hand, we show that Lie subalgebra Liealg U(Dp) of Vec(Dp)
generated by locally nilpotent vector fields on Dp is simple.

Theorem 30. Let Dp be a Danielewski surface, where deg p ≥ 2. Then Liealg U(Dp)
is a simple Lie algebra.
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Automorphisms of the Lie Algebra of Vector
Fields on Affine n-Space

Hanspeter Kraft Andriy Regeta
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Abstract

We study the vector fields Vec(An) of affine n-space An, the subspace Vecc(An)
of vector fields with constant divergence, and the subspace Vec0(An) of vector fields
with divergence zero, and we show that their automorphisms, as Lie algebras, are
induced by the automorphisms of An:

Aut(An)
∼−→ AutLie(Vec(An))

∼−→ AutLie(Vec
c(An))

∼−→ AutLie(Vec
0(An)).

This generalizes results of the second author obtained in dimension 2, see [Reg13].
The case of Vec(An) goes back to KULIKOV [Kul92].

This generalization is crucial in the context of infinite-dimensional algebraic
groups, because Vecc(An) is canonically isomorphic to the Lie algebra of Aut(An),
and Vec0(An) is isomorphic to the Lie algebra of the closed subgroup SAut(An) ⊂
Aut(An) of automorphisms with Jacobian determinant equal to 1.

Keywords. Automorphisms, vector fields, Lie algebras, affine n-space.

1 Introduction

Let K be an algebraically closed field of characteristic zero. Denote by Vec(An) the Lie
algebra of polynomial vector fields on affine n-space An = Kn:

Vec(An) = Der(K[x1, . . . , xn]) =

{∑

i

fi
∂

∂xi
| fi ∈ K[x1, . . . , xn]

}
.
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2 Hanspeter Kraft, Andriy Regeta

where we use the standard identification of a derivation δ with
∑

i δ(xi)
∂
∂xi

. The group
Aut(An) of polynomial automorphisms of An acts on Vec(An) in the usual way. For
ϕ ∈ Aut(An) and δ ∈ Vec(An) = Der(K[x1, . . . , xn]) we define

Ad(ϕ)δ := ϕ∗−1 ◦ δ ◦ ϕ∗

where ϕ∗ : K[x1, . . . , xn] → K[x1, . . . , xn], f 7→ f ◦ ϕ, is the comorphism of ϕ. It is
shown in [Kul92] that Ad: Aut(An) → AutLie(Vec(An)) is an isomorphism. We will
give a short proof in section 3.

Recall that the divergence of a vector field δ =
∑

i fi
∂
∂xi

is defined by Div δ :=
∑

i
∂fi
∂xi

.
This allows to define the following subspaces of Vec(An),

Vec0(An) := {δ ∈ Vec(An) | Div δ = 0} ⊂ Vecc(An) := {δ ∈ Vec(An) | Div δ ∈ K},

which are Lie subalgebras, because Div[δ, η] = δ(Div η)− η(Div δ). We have

Vecc(An) = Vec0(An)⊕K∂E where ∂E :=
∑

i

xi
∂

∂xi
is the EULER field.

The aim of this note is to prove the following result about the automorphism groups of
these Lie algebras.

Main Theorem. There are canonical isomorphisms

Aut(An)
∼−→ AutLie(Vec(An))

∼−→ AutLie(Vecc(An))
∼−→ AutLie(Vec0(An)).

Remark 1.1. It is easy to see that the theorem holds for any fieldK of characteristic zero.
In fact, all the homomorphisms are defined over Q, and are equivariant with respect to the
obvious actions of the Galois group Γ = Gal(K̄/K).

As a consequence, we will get the next result (see Corollary 4.4) which goes back to
KULIKOV [Kul92, Theorem 4].

Corollary. If every injective endomorphism of the Lie algebra Vec(An) is an automor-
phism, then the Jacobian Conjecture holds in dimension n.

Remark 1.2. The Main Theorem has another interesting consequence. The group Aut(An)

is an infinite-dimensional algebraic group in the sense of SHAFAREVICH [Sha66, Sha81],
shortly an ind-group (cf. [Kum02]), and its Lie algebra is canonically isomorphic to
Vecc(An). It was recently shown by BELOV-KANEL and YU [BKY12] that every au-
tomorphism of Aut(An) as an ind-group is inner. Using the Main Theorem above one
can give a new proof of this and extend it to the closed subgroup SAut(An) ⊂ Aut(An)

of automorphisms with Jacobian determinant equal to 1. The details will appear in the
forthcoming paper [Kra14] where we also show that the maps in the Main Theorem are
isomorphisms of ind-groups.
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We add here a lemma which will be used later on.

Lemma 1.3. Vec(An) and Vec0(An) are simple Lie algebras, and

Vec0(An) = [Vecc(An),Vecc(An)].

Proof. The formula [ ∂
∂xj
,
∑

i fi
∂
∂xi

] =
∑

i
∂fi
∂xj

∂
∂xi

shows that every nonzero ideal a of
Vec(An) contains a nonzero element from

∑
iK

∂
∂xi

, and [x`
∂

∂xj
, ∂
∂xi

] = −δi` ∂
∂xj

implies

that
∑

iK
∂
∂xi
⊆ a. Now we use [f ∂

∂xj
, ∂
∂xi

] = − ∂f
∂xi

∂
∂xj

to conclude that a = Vec(An),
hence Vec(An) is simple. (See also [Jor78, Theorem on page 446].)

The second statement is proved in a similar way and can be found in [Sha81, Lemma 3],
and from that the last claim follows immediately.

2 Group actions and vector fields

If an algebraic group G acts on an affine variety X we obtain a canonical linear map
LieG → Vec(X) defined in the usual way (cf. [Kra11, II.4.4]). For every A ∈ LieG the
associated vector field ξA on X is defined by

(ξA)x := dµx(A) for x ∈ X (2.1)

where µx : G → X , g 7→ gx, is the orbit map in x ∈ X . It is well-known that the linear
map A 7→ ξA is a anti-homomorphism of Lie algebras, and that the kernel is equal to
the Lie algebra of the kernel of the action G → Aut(X). In particular, for any algebraic
subgroup G ⊂ Aut(An) we have a canonical injection LieG ↪→ Vec(An); we will denote
the image by L(G). Let us point out that a connected G ⊂ Aut(An) is determined by
L(G), i.e., if L(G) = L(H) for algebraic subgroups G,H ⊂ Aut(An), then G0 = H0.

Recall that the vector field δ ∈ Vec(An) is called locally nilpotent if the action of δ on
K[x1, . . . , xn] is locally nilpotent, i.e., for any f ∈ K[x1, . . . , xn] we have δm(f) = 0 if
m is large enough. Every such δ defines an action of the additive group K+ on An such
that δ = ξ1 where 1 ∈ K = LieK+ (see (2.1) above).

Lemma 2.1. Let u ⊂ Vec(An) be a finite dimensional commutative Lie subalgebra con-
sisting of locally nilpotent vector fields. Then there is a commutative unipotent algebraic
subgroup U ⊂ Aut(An) such that L(U) = u. If centVec(An)(u) = u, then U acts transi-
tively on An.

Proof. It is clear that u = L(U) for a commutative unipotent subgroup U ⊂ Aut(An). In
fact, choose a basis (δ1, . . . , δm) if u and consider the corresponding actions ρi : K+ →
Aut(An). Since the associated vector fields δi commute, the same holds for the actions
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ρi, so that we get an action of (K+)m. It follows that the image U ⊂ Aut(An) is a
commutative unipotent subgroup with L(U) = u.

Assume that the action of U is not transitive. Then all orbits have dimension < n,
because orbits of unipotent groups acting on affine varieties are closed (see [Bor91,
Chap. I, Proposition 4.10]). But then there is a nonconstant U -invariant function f ∈
K[x1, . . . , xn]. This implies that for every δ ∈ u the vector field fδ commutes with u and
thus belongs to centVec(An)(u), contradicting the assumption.

Any δ ∈ Vec(An) acts on the functions K[x1, . . . , xn] as a derivation, and on the Lie
algebra Vec(An) by the adjoint action, ad(δ)µ := [δ, µ] = δ ◦µ−µ◦ δ. These two actions
are related as shown in the following lemma whose proof is obvious.

Lemma 2.2. Let δ, µ ∈ Vec(An) be two commuting vector fields and f ∈ K[x1, . . . , xn].
Then

ad(δ)(fµ) = δ(f)µ.

In particular, if ad(δ) is locally nilpotent on Vec(An), then δ is locally nilpotent as a
vector field.

3 Proof of the Main Theorem, part I

We first give a proof of the following result which goes back to KULIKOV [Kul92, Proof
of Theorem 4]; see also [Bav13].

Theorem 3.1. The canonical map Ad: Aut(An)→ AutLie(Vec(An)) is an isomorphism.

Denote by Affn ⊂ Aut(An) the closed subgroup of affine transformations and by
S = (K+)n ⊂ Affn the subgroup of translations. Then

L(Affn) = 〈xi∂xj
, ∂xk

| 1 ≤ i, j, k ≤ n〉 ⊃ L(S) = 〈∂x1 , . . . , ∂xn〉 (3.1)

where ∂xj
:= ∂

∂xj
. Put affn := Lie Affn and saffn := [affn, affn] = Lie SAffn where

SAffn := (Affn,Affn) ⊂ Affn is the commutator subgroup, i.e. the closed subgroup of
those affine transformations x 7→ gx + b where g ∈ SLn. The next lemma is certainly
known. For the convenience of the reader we indicated a short proof.

Lemma 3.2. The canonical homomorphisms

Affn
Ad−−−→
'

AutLie(affn)
res−−−→
'

AutLie(saffn)

are isomorphisms.
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Proof. It is clear that the two homomorphisms

Ad: Affn → AutLie(affn) and res : AutLie(affn)→ AutLie(saffn)

are both injective. Thus it suffices to show that the composition res ◦Ad is surjective.
We write the elements of Affn in the form (v, g) with v ∈ S = (K+)n, g ∈ GLn

where (v, g)x = gx+v for x ∈ An. It follows that (v, g)(w, h) = (v+gw, gh). Similarly,
(a,A) ∈ affn means that a ∈ s := LieS = Kn, A ∈ gln, and (a,A)x = Ax + a. For the
adjoint representation of g ∈ GLn and of v ∈ S on affn we find

Ad(g)(a,A) = (ga, gAg−1) and Ad(v)(a,A) = (a− Av,A), (3.2)

and thus, for (b, B) ∈ affn,

ad(B)(a,A) = (Ba, [B,A]) and ad(b)(a,A) = (a− Ab,A). (3.3)

Now let θ be an automorphism of the Lie algebra saffn. Then θ(s) = s since s is the
solvable radical of saffn. Since g := θ|s ∈ GLn, we can replace θ by Ad(g−1)◦θ and thus
assume, by (3.2), that θ is the identity on s. This implies that θ(a,A) = (a+ `(A), θ̄(A))

where ` : sln → s is a linear map and θ̄ : sln
∼−→ sln is a Lie algebra automorphism.

From (3.3) we get ad(b, B)(a, 0) = ad(B)(a, 0) = (Ba, 0) for all a ∈ s, hence

(Ba, 0) = θ(Ba, 0) = θ(ad(B)(a, 0)) =

= ad(θ(B))(a, 0) = ad(θ̄(B))(a, 0) = (θ̄(B)a, 0).

Thus θ̄(B) = B, i.e. θ(a,A) = (a + `(A), A). Now an easy calculation shows that
`([A,B]) = A`(B)−B`(A). This means that ` is a cocycle of sln. Since sln is semisimple,
` is a coboundary and thus `(A) = Av for a suitable v ∈ Kn. In view of (3.3) this implies
that θ = Ad(−v), and the claim follows.

Proof of Theorem 3.1. It is clear that the homomorphism

Ad: Aut(An)→ AutLie(Vec(An))

is injective. So let θ ∈ AutLie(Vec(An)) be an arbitrary automorphism.
We have seen above that L(S) = 〈∂x1 , . . . , ∂xn〉 ⊂ Vec(An) where S ⊂ Affn is

the subgroup of translations. Clearly, for every δ ∈ L(S) the adjoint action ad(δ) on
Vec(An) is locally nilpotent, and the same holds for any element from u := θ(L(S)).
It follows from Lemma 2.2 that u consists of locally nilpotent vector fields. Hence, by
Lemma 2.1, u = L(U) for a commutative unipotent subgroup U of dimension n. More-
over, centVec(An)(L(S)) = L(S), and so centVec(An)(u) = u which implies, again by
Lemma 2.1, that U acts transitively on An. Thus every orbit map U → An is an isomor-
phism. It follows that there is an automorphism ϕ ∈ Aut(An) such that ϕUϕ−1 = S.
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In fact, fix a group isomorphism ψ : U
∼−→ S and take the orbit maps µS : S

∼−→ An and
µU : U

∼−→ An at the origin 0 ∈ An. Then one easily sees that ϕ := µS ◦ ψ ◦ µ−1
U has the

property that ϕ ◦ u ◦ ϕ−1 = ψ(u) for all u ∈ U .
It follows that the automorphism θ′ := Ad(ϕ) ◦ θ ∈ AutLie(Vec(An)) sends L(S) iso-

morphically onto itself. Now the relations [∂xi
, xj∂xk

] = δij∂xk
imply that θ′(L(Affn)) =

L(Affn). By Lemma 3.2, there is an α ∈ Affn such that Ad(α) ◦ θ′ is the identity on
L(Affn). Hence, by the following lemma, Ad(α) ◦ θ′ = id, because Ad(λE) acts by
multiplication with λ on L(S), and so θ = Ad(ϕ−1 ◦ α−1).

Lemma 3.3. Let θ be an injective endomorphism of one of the Lie algebras Vec(An),
Vecc(An) or Vec0(An). If θ is the identity on L(SLn), then θ = Ad(λE) for some λ ∈ K∗.

Proof. We consider the action of GLn on Vec(An). Denote by Vec(An)d the homoge-
neous vector fields of degree d, i.e.

Vec(An)d :=
⊕

i

K[x1, . . . , xn]d+1 ∂xi
' K[x1, . . . , xn]d+1 ⊗Kn.

Note that λE ∈ GLn acts by scalar multiplication with λ−d on Vec(An)d. We have split
exact sequences of GLn-modules

0 −−−→ Vec0(An)d −−−→ Vec(An)d
Div−−−→ K[x1, . . . , xn]d −−−→ 0 (3.4)

where K[x1, . . . , xn]−1 = (0). Moreover, the SLn-modules Vec0(An)d (for d ≥ −1) and
K[x1, . . . , xn]d (for d ≥ 0) are simple and pairwise nonisomorphic (see PIERI’s formula
[Pro07, Chap. 9, section 10.2]). The splitting of (3.4) is given by K[x1, . . . , xn]d∂E ⊂
Vec(An)d where ∂E = x1∂x1 + · · · + xn∂xn is the EULER field. In fact, the EULER field
is fixed under GLn and Div(f∂E) = (d+ 1)f for f ∈ K[x1, . . . , xn]d.

Now let θ be an injective endomorphism of Vec(An). If θ is the identity on L(SLn),
then θ is SLn-equivariant and thus acts with a scalar λd on Vec0(An)d and with a scalar
µd on K[x1, . . . , xn]d∂E , by SCHUR’s Lemma. The relations

[xe+1
j ∂xi

, xd+1
i ∂xj

] = (d+ 1)xdix
e+1
j ∂xj

− (e+ 1)xd+1
i xej∂xi

, i 6= j,

show that λeλd = λe+d, hence λd = λd for λ := λ1. The relations

[xei∂E, x
d
i ∂E] = (d− e)xe+d

i ∂E

show that µeµd = µe+d for e 6= d which also implies that µd = µd for µ := µ1. Finally,
from the relation [∂x1 , x2∂E] = x2∂x1 , we get λ = µ, and so θ = Ad(λ−1 id). This proves
the claim for Vec(An). The two other cases follow along the same lines.
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4 Étale Morphisms and Vector Fields

In the first section we defined the action of Aut(An) on the vector fields Vec(An) by the
formula Ad(ϕ)δ := ϕ∗−1 ◦ δ ◦ ϕ∗. In more geometric terms, considering δ as a section of
the tangent bundle TAn = An × Cn → An, one defines the pull-back of δ by

ϕ∗(δ) := (dϕ)−1 ◦ δ ◦ ϕ, i.e., ϕ∗(δ)a = (dϕa)
−1(δϕ(a)) for a ∈ An.

Clearly, ϕ∗(δ) = Ad(ϕ−1)δ. However, the second formula above shows the well-known
fact that the pull-back ϕ∗(δ) of a vector field δ is also defined for an étale morphism
ϕ : An → An. In the holomorphic setting this can be understood as lifting the correspond-
ing integral curves.

Proposition 4.1. Let ϕ : An → An be an étale morphism. For any vector field δ ∈
Vec(An) there is a vector field ϕ∗(δ) ∈ Vec(An) defined by ϕ∗(δ)a := (dϕ)−1

a δϕ(a) for
a ∈ An. It is uniquely determined by

ϕ∗(δ)ϕ∗(f) = ϕ∗(δf) for f ∈ K[x1, . . . , xn]. (4.1)

The map ϕ∗ : Vec(An) → Vec(An) is an injective homomorphism of Lie algebras satis-
fying ϕ∗(h δ) = ϕ∗(h)ϕ∗(δ) for h ∈ K[x1, . . . , xn]. Moreover, (η ◦ ϕ)∗ = ϕ∗ ◦ η∗.

Proof. For a vector field δ : An → TAn and a ∈ An we have (dϕ ◦ δ)a = dϕa(δa). Thus,
the equation (dϕ)a(δ̃a) = (δ̃ ◦ ϕ)a = δ̃ϕ(a) for the field δ̃ has a unique solution, namely

δ̃a := (dϕa)
−1(δϕ(a)),

which is well defined since dϕa is invertible. The Jacobian determinant det(Jac(ϕ)) is a
nonzero constant, and so the inverse matrix Jac(ϕ)−1 has entries in K[x1, . . . , xn]. There-
fore, the vector field ϕ∗(δ) := δ̃ defined above is polynomial, and it satisfies the equation
(4.1). This proves the first part of the proposition and shows that ϕ∗ is injective. Using
equation (4.1) we find

ϕ∗((δ1δ2)f) = ϕ∗(δ1(δ2f)) = ϕ∗(δ1)ϕ∗(δ2f) = (ϕ∗(δ1)ϕ∗(δ2))ϕ∗(f),

henceϕ∗([δ1, δ2]f) = [ϕ∗(δ1), ϕ∗(δ2)]ϕ∗(f), and soϕ∗([δ1, δ2]) = [ϕ∗(δ1), ϕ∗(δ2)]. More-
over,

ϕ∗(hδ)ϕ∗(f) = ϕ∗((hδ)f) = ϕ∗(h)ϕ∗(δf) = ϕ∗(h)ϕ∗(δ)ϕ∗(f),

hence ϕ∗(hδ) = ϕ∗(h)ϕ∗(δ). This proves the second part of the proposition, and the last
claim is obvious.
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Remark 4.2. In the notation of the proposition above let ϕ = (f1, . . . , fn). Then we get
ϕ∗(δxi) = ϕ∗(δ)fi =

∑
j

∂fi
∂xj
ϕ∗(δ)xj . Hence, for δ = ∂xk

, we obtain

δik = ϕ∗(∂xk
)fi =

∑

j

∂fi
∂xj

ϕ∗(∂xk
)xj.

This shows that the matrix
(
ϕ∗(∂xk

)xj

)
(j,k)

is invertible,
(
ϕ∗(∂xk

)xj

)−1

(j,k)
= Jac(ϕ), and

that
∂xi

=
∑

j

∂fi
∂xj

ϕ∗(∂xj
). (4.2)

Proposition 4.3. Let ϕ : An → An be an étale morphism. Then the pull-back map

ϕ∗ : Vec(An)→ Vec(An)

is an isomorphism if and only if ϕ is an automorphism.

Proof. Assume that ϕ∗ : Vec(An)→ Vec(An) is an isomorphism. Since ϕ is étale, the co-
morphism ϕ∗ : K[x1, . . . , xn]→ K[x1, . . . , xn] is injective, and we only have to show that
it is surjective. Proposition 4.1 implies thatϕ∗(Vec(An)) =

∑
i ϕ
∗(K[x1, . . . , xn])ϕ∗(∂xi

),
and from equation (4.2) above, we get

Vec(An) = ⊕iK[x1, . . . , xn]∂xi
= ⊕iK[x1, . . . , xn]ϕ∗(∂xi

).

Hence ϕ∗(Vec(An)) = Vec(An) if and only if ϕ∗(K[x1, . . . , xn]) = K[x1, . . . , xn].

As a corollary of the two propositions above, we get the following result which is due
to KULIKOV [Kul92, Theorem 4].

Corollary 4.4. If every injective endomorphism of the Lie algebra Vec(An) is an auto-
morphism, then the Jacobian Conjecture holds in dimension n.

Remark 4.5. The result of KULIKOV is stronger. He proves that every injective endomor-
phism of Vec(An) is induced by an étale map ϕ which implies also the converse of the
statement above: If the Jacobian Conjecture holds in dimension n, then every injective
endomorphism of Vec(An) is an automorphism.

We finish this section by showing that if the divergence of a vector field is a constant,
then it is invariant under an étale morphism. More generally, we have the following result.

Proposition 4.6. Let ϕ : An → An be an étale morphism, and let δ be a vector field. Then
Divϕ∗(δ) = ϕ∗(Div δ). In particular, δ ∈ Vecc(An) if and only if ϕ∗(δ) ∈ Vecc(An), and
in this case we have Divϕ∗(δ) = Div δ.
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Proof. Set ϕ = (f1, . . . , fn), δ =
∑

j hj∂xj
and ϕ∗(δ) =

∑
j h̃j∂xj

. Then, by (4.1),

hk(f1, . . . , fn) =
∑

i

h̃i
∂fk
∂xi

for k = 1, . . . , n.

Applying ∂
∂xj

to the left hand side we get the matrix
(∑

i

∂hk
∂xi

(f1, . . . , fn)
∂fi
∂xj

)

(k,j)

= H(f1, . . . , fn) · Jac(ϕ)

where H := Jac(h1, . . . , hn). On the right hand side, we obtain similarly
(∑

i

∂h̃i
∂xj

∂fk
∂xi

+
∑

i

h̃i
∂2fk
∂xi∂xj

)

(k,j)

= H̃ · Jac(ϕ) +
∑

i

h̃i
∂

∂xi
Jac(ϕ)

Multiplying this matrix equation from the right with Jac(ϕ)−1 we finally get

H(f1, . . . , fn) = H̃ +
∑

i

h̃i
∂

∂xi
Jac(ϕ) · Jac(ϕ)−1

Now we take on both sides the traces. Using Lemma 4.7 below and the obvious equalities
Div δ = trH and Div δ̃ = tr H̃ , we finally get

Div δ̃ = (Div δ)(f1, . . . , fn) = ϕ∗(Div δ).

The claim follows.

Lemma 4.7. Let A be an n× n matrix whose entries aij(t) are polynomials in t. Then

tr

(
d

dt
A · Adj(A)

)
=

d

dt
detA

where Adj(A) is the adjoint matrix of A.

The proof is a nice exercise in linear algebra which we leave to the reader! It holds for
rational entries aij(t) over any field K, and in case K = R or C also for differentiable
entries aij(t).

5 Proof of the Main Theorem, part II

We have seen that the canonical map Ad: Aut(An) → AutLie(Vec(An)) is an iso-
morphism (Theorem 3.1). It follows from Proposition 4.6 that every automorphism of
Vec(An) induces an automorphism of Vecc(An). Moreover, since

Vec0(An) = [Vecc(An),Vecc(An)]

(Lemma 1.3), we get a canonical map AutLie(Vecc(An)) → AutLie(Vec0(An)) which is
easily seen to be injective. Thus the main theorem follows from the next result.
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Theorem 5.1. The canonical map Ad: Aut(An) → AutLie(Vec0(An)) is an isomor-
phism.

The proof needs some preparation. The next proposition is a reformulation of some
results from [Now86] and [LD12]. For the convenience of the reader we will give a short
proof.

Proposition 5.2. Let δ1, . . . , δn ∈ Vec(An) be pairwise commuting and K-linearly inde-
pendent vector fields. Then the following statements are equivalent.

(i) There is an étale morphism ϕ : An → An such that ϕ∗(∂xi
) = δi for all i;

(ii) Vec(An) =
⊕

iK[x1, . . . , xn]δi;

(iii) There exist f1, . . . , fn ∈ K[x1, . . . , xn] such that δi(fj) = δij;

(iv) δ1, . . . , δn do not have a common DARBOUX polynomial.

Recall that a common DARBOUX polynomial of the δi is a nonconstant polynomial f ∈
K[x1, . . . , xn] such that δi(f) = hif for some hi ∈ K[x1, . . . , xn], i = 1, . . . , n.

Proof. (a) It follows from Remark 4.2 that (i) implies (ii) and (iii). Clearly, (ii) implies
(iv) since a common DARBOUX polynomial for the δi is also a common DARBOUX poly-
nomial for the ∂xi

which does not exist.

(b) We now show that (ii) implies (i), hence (iii), using the following well-known fact.
If h1, . . . , hn ∈ K[x1, . . . , xn] satisfy the conditions ∂hi

∂xj
=

∂hj

∂xi
for all i, j, then there is an

f ∈ K[x1, . . . , xn] such that hi = ∂f
∂xi

for all i.

By (ii) we have ∂xi
=
∑

k hikδk for i = 1, . . . , n. We claim that ∂hik

∂xj
=

∂hjk

∂xi
for all

i, j, k. In fact,

0 = ∂xi
∂xj
− ∂xj

∂xi
= ∂xi

∑

k

hjkδk − ∂xj

∑

k

hikδk =

=
∑

k

∂hjk
∂xi

δk +
∑

k

hjk∂xi
δk −

∑

k

∂hik
∂xj

δk −
∑

k

hik∂xj
δk =

=
∑

k

(
∂hjk
∂xi
− ∂hik
∂xj

)
δk +

(∑

k,`

hjkhi`δ`δk −
∑

k,`

hikhj`δ`δk

)
=

=
∑

k

(
∂hjk
∂xi
− ∂hik
∂xj

)
δk +

∑

k,`

hikhj`[δk, δ`] =

=
∑

k

(
∂hjk
∂xi
− ∂hik
∂xj

)
δk.
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Hence hik = ∂fk
∂xi

for suitable f1, . . . , fn ∈ K[x1, . . . , xn]. It is clear that the matrix (hik)

is invertible. This implies that the morphism ϕ := (f1, . . . , fn) : An → An is étale, and
∂xi

=
∑

k
∂fk
∂xi
δk, hence δk = ϕ∗(∂xk

), by equation (4.2) in Remark 4.2.

(c) Assume that (iii) holds. Setting δi =
∑

k hik∂xk
and applying both sides to fj , we

see that the matrix (hik) ∈ Mn(K[x1, . . . , xn]) is invertible, hence (ii). Thus the first three
statements of the proposition are equivalent, and they imply (iv).

(d) Finally, assume that (iv) holds. Put δi =
∑

k hik∂xk
. Since [δi, δj] = 0 we get

δi(hjk) = δj(hik) for all i, j, k. Now an easy calculation shows that δk(det(hij)) =

Div(δk) det(hij), and so det(hij) ∈ K. If det(hij) 6= 0, then (ii) follows.
If det(hij) = 0, then rank(

∑n
i=1 K[x1, . . . , xn]δi) = r < n, and we can assume

that rank(
∑r

i=1 K[x1, . . . , xn]δi) = r. Choose a nontrivial relation
∑r+1

i=1 fiδi = 0 where
gcd(f1, . . . , fr+1) = 1. Since 0 = δj(

∑r+1
i=1 fiδi) =

∑r+1
i=1 δj(fi)δi for any j we see that

δj(fi) ∈ K[x1, . . . , xn]fi, and since the δj are K-linearly independent, at least one of the
fi is not a constant, hence a common DARBOUX polynomial, contradicting (iv).

The second main ingredient for the proof is the following result.

Lemma 5.3. Let δ1, δ2 ∈ Vec0(An) be commuting vector fields. Assume that

(a) δ1 and δ2 have a common DARBOUX polynomial f where δif 6= 0, i = 1, 2.

(b) Each δi acts locally nilpotently on Vec0(An).

Then K[x1, . . . , xn]δ1 + K[x1, . . . , xn]δ2 ⊆ Vec(An) is a K[x1, . . . , xn]-submodule of
rank ≤ 1.

Proof. We will show that there are nonzero polynomials p1, p2 such that p1δ1 = p2δ2. We
have δi(f) = hif where h1, h2 6= 0. Since δ1 and δ2 commute we get δ1(h2f) = δ2(h1f),
and so δ1h2 = δ2h1. Using the formula Div(gδ) = δg + gDiv(δ), this implies that
δ := h1δ2 − h2δ1 ∈ Vec0(An). Moreover, δf = 0, and so fδ ∈ Vec0(An). Since

[δ1, ξ] = [δ1, h1δ2]− [δ1, h2δ1] = (δ1h1)δ2 − (δ1h2)δ1,

we get (ad δ1)kδ = δk1(h1)δ2−δk1(h2)δ1 and (ad δ1)k(fδ) = δk1(fh1)δ2−δk1(fh2)δ1. Now,
by assumption (b), there is a k > 0 such that (ad δ1)kδ = (ad δ1)k(fδ) = 0, hence

δk1(h1)δ2 = δk1(h2)δ1 and δk1(fh1)δ2 = δk1(fh2)δ1.

Thus the claim follows except if δk1h1 = δk1h2 = δk1(fh1) = δk1(fh2) = 0. We will
show that this leads to a contradiction. Since δ1f = h1f , we get δk+1

1 f = 0. Choose r, s
minimal with δr1h1 = 0 and δs1f = 0. By assumption, r, s ≥ 1, and we get δr+s−2

1 (h1f) =

δr−1
1 h1 · δs−1

1 f 6= 0. On the other hand, we have δs−1
1 (h1f) = δs1f = 0, and we end up

with a contradiction, because s− 1 ≤ r + s− 2.
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Now we can prove the Theorem.

Proof of Theorem 5.1. The case n = 1 is handled in Lemma 3.2, so we can assume that
n ≥ 2. Let θ be an automorphism of Vec0(An) as a Lie algebra, and put δi := θ(∂xi

). Then
the vector fields δ1, . . . , δn are pairwise commuting andK-linearly independent. Since ∂xi

acts locally nilpotently on Vec0(An) the same holds for δi. Moreover, the centralizer of the
δi in Vec0(An) is the linear span of the δi, i.e. [δ, δi] = 0 for all i implies that δ ∈⊕iKδi.
In the following we will use vector fields with rational coefficients:

Vecrat(An) := K(x1, . . . , xn)⊗K[x1,...,xn] Vec(An) =
n⊕

i=1

K(x1, . . . , xn)∂xi
.

(1) We first claim that the δi do not have a common DARBOUX polynomial. So assume
that there exists a nonconstant f ∈ K[x1, . . . , xn] such that δif = hif for all i and suitable
hi ∈ K[x1, . . . , xn].

First assume that h1 = 0, i.e. δ1f = 0. Then fδ1 ∈ Vec0(An), and for any h ∈
K[x1, . . . , xn] and every i we have [δi, hfδ1] = δi(hf)δ1 = (δi(h) + hhi)fδ1, and so

(ad δi)
k(K[x1, . . . , xn]fδ1) ⊆ K[x1, . . . , xn]fδ1 for all k ≥ 0. (5.1)

Set η := θ−1(fδ1). Then there are k1, . . . , kn ∈ N such that

η0 := (ad ∂x1)
k1(ad ∂x2)

k2 · · · (ad ∂xn)knη ∈ K∂x1 ⊕ · · · ⊕K∂xn \ {0}.

Hence, θ(η0) = (ad δ1)k1(ad δ2)k2 · · · (ad δn)kn(fδ1) ∈ Kδ1 ⊕ · · · ⊕ Kδn \ {0} which
contradicts (5.1), because f /∈ K.

We are left with the case where all hi 6= 0. Then, Lemma 5.3 above implies that∑
iK[x1, . . . , xn] δi ⊆ Vec(An) has rank 1, i.e., there exist a δ ∈ Vec(An) and nonzero

rational functions ri ∈ K(x1, . . . , xn) such that δi = riδ for i = 1, . . . , n. We can assume
that δ is minimal, i.e., that δ is not of the form q δ′ with a nonconstant polynomial q.
For every µ commuting with δi, we get 0 = [µ, δi] = [µ, riδ] = µ(ri)δ + ri[µ, δ], hence
[µ, δ] ∈ K(x1, . . . , xn)δ. It is easy to see that

L := {ξ ∈ Vec(An) | [ξ, δ] ∈ K(x1, . . . , xn)δ}

is a Lie subalgebra of Vec(An) which contains all elements commuting with one of the
δi. Since Vec0(An) is generated, as a Lie algebra, by elements commuting with one of
the ∂xi

, we see that θ(Vec0(An)) = Vec0(An) is generated by the elements commuting
with one of the δi. Thus Vec0(An) ⊆ L, and so [Vec0(An), δ] ⊆ K(x1, . . . , xn)δ. For
δ =

∑
i pi∂xi

we get [∂xk
, δ] =

∑
i
∂pi
∂xk

∂xi
= sδ for some s ∈ K(x1, . . . , xn), hence

∂pi
∂xk

pj =
∂pj
∂xk

pi for all pairs i, j. This implies that ∂
∂xk

pj
pi

= 0 in case pi 6= 0, i.e. pj
pi

does
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not depend on xk. Since this holds for all k, we conclude that pj = cjpi for some cj ∈ K,
hence δ =

∑
j cj∂xj

, because δ is minimal. In particular, [∂xk
, δ] = 0 for all k. Now

we get [x`∂xk
, δ] = −c`∂xk

∈ K(x1, . . . , xn)δ for all k, ` which implies δ = 0, hence a
contradiction.

(2) Now we use the implication (vi) ⇒ (i) of Proposition 5.2 to see that there is an
étale morphism ϕ : An → An with δi = ϕ∗(∂xi

) for all i. Then the composition θ′ :=

θ−1 ◦ ϕ∗ : Vec0(An)→ Vec0(An) is an injective homomorphism of Lie algebras (Propo-
sition 4.1) and θ′(∂xi

) = ∂xi
. Hence, Lemma 5.4 below implies that θ′ = Ad(s) = (s−1)∗

where s ∈ Aut(An) is a translation, hence θ = (ϕ ◦ s)∗. Now Proposition 4.3 implies that
ψ := ϕ ◦ s is an automorphism of An, and so θ = Ad(ψ−1) as claimed.

Lemma 5.4. Let θ be an injective endomorphism of Vec0(An) such that θ(∂xi
) = ∂xi

for all i. Then θ = Ad(s) where s : An ∼−→ An is a translation. In particular, θ is an
automorphism.

Proof. We know that
∑

iK∂xi
= L(S) where S ⊂ Affn are the translations. Moreover,

L(Affn) is the normalizer of L(S) in the Lie algebra Vec(An). Hence θ(L(SAffn)) =

L(SAffn), and so there is an affine transformation g such that Ad(g)|L(SAffn) = θ|L(SAffn),
by Lemma 3.2. Since Ad(g) is the identity on L(S) we see that g is a translation. It
follows that Ad(g−1) ◦ θ is the identity on L(SLn), hence Ad(g−1) ◦ θ = Ad(λE) for
some λ ∈ K∗, by Lemma 3.3. But λ = 1, because θ is the identity on L(S), and so
θ = Ad(g).
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LIE SUBALGEBRAS OF VECTOR FIELDS ON AFFINE 2-SPACE

AND THE JACOBIAN CONJECTURE

ANDRIY REGETA

Abstract. We study Lie subalgebras L of the vector fields Vecc(A2) of affine

2-space A2 of constant divergence, and we classify those L which are isomorphic

to the Lie algebra aff2 of the group Aff2(K) of affine transformations of A2.
We then show that the following statements are equivalent:

(a) The Jacobian Conjecture holds in dimension 2;
(b) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are conjugate under

Aut(A2);

(c) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are algebraic.
Finally, we use these results to show that the automorphism groups of the Lie

algebras Vec(A2), Vec0(A2) and Vecc(A2) are all isomorphic to Aut(A2).

1. Introduction

Let K be an algebraically closed field of characteristic zero. It is a well-known
consequence of the amalgamated product structure of Aut(A2) that every reductive
subgroup G ⊂ Aut(A2) is conjugate to a subgroup of GL2(C) ⊂ Aut(A2), i.e.
there is a ψ ∈ Aut(A2) such that ψGψ−1 ⊂ GL2(C) ([Kam79], cf. [Kra96]). The
“Linearization Problem” asks whether the same holds for Aut(An). It was shown
by Schwarz in [Sch89] that this is not the case in dimensions n ≥ 4 (cf. [Kno91]).

In this paper we consider the analogue of the Linearization Problem for Lie
algebras. It is known that the Lie algebra Lie(Aut(A2)) of the ind-group Aut(A2)
is canonically isomorphic to the Lie algebra Vecc(A2) of vector fields of constant
divergence ([Sha66, Sha81], cf. [Kum02]). We will see that the Lie subalgebra

L := K(x2∂x − 2xy∂y)⊕K(x∂x − y∂y)⊕K∂x ⊂ Vecc(A2)

where ∂x := ∂
∂x and ∂y := ∂

∂y , is isomorphic to sl2, but not conjugate to the

standard sl2 ⊂ Vecc(A2) under Aut(A2) (Remark 4.3). However, for some other
Lie subalgebras of Vecc(A2), the situation is different. Let Aff2(K) ⊂ Aut(A2) be
the group of affine transformations and SAff2(K) ⊂ Aff2(K) the subgroup of affine
transformations with determinant equal to 1, and denote by aff2, respectively saff2
their Lie algebras which we consider as subalgebras of Vecc(A2). The first result
we prove is the following (see Proposition 3.9). For f ∈ K[x, y] we set Df :=
fx∂y − fy∂x ∈ Vecc(A2).

Theorem A. Let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to aff2. Then there
is an étale map ϕ : A2 → A2 such that L = ϕ∗(aff2). More precisely, if (Df , Dg) is
a basis of the solvable radical of [L,L], then

L = 〈Df , Dg, Df2 , Dg2 , fDg, gDf 〉,
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and one can take ϕ = (f, g).

The analogous statements hold for Lie subalgebras isomorphic to saff2. As a
consequence of this classification we obtain the next result (see Theorem 4.1 and
Corollary 4.4). Recall that a Lie subalgebra of Vec(A2) is algebraic if it acts locally
finitely on Vec(A2).

Theorem B. The following statements are equivalent:

(i) The Jacobian Conjecture holds in dimension 2;
(ii) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are conjugate under

Aut(A2);
(iii) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to saff2 are conjugate under

Aut(A2);
(iv) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to aff2 are algebraic;
(v) All Lie subalgebras L ⊂ Vecc(A2) isomorphic to saff2 are algebraic.

Finally, as a consequence of the theorem above, we can determine the automor-
phism groups of the Lie algebras of vector fields (Theorem 4.5).

Theorem C. There are canonical isomorphisms

Aut(A2)
∼−→ AutLA(Vec(A2))

∼−→ AutLA(Vecc(A2))
∼−→ AutLA(Vec0(A2)).

(Here Vec0(A2) denotes the vector fields with zero divergence, see section 2).

Acknowledgement: The author would like to thank his thesis advisor Hanspeter

Kraft for constant support and help during writing this paper.

2. The Poisson algebra

Definitions. Let K be an algebraically closed field of characteristic zero and let
P be the Poisson algebra, i.e., the Lie algebra with underlying vector space K[x, y]
and with Lie bracket {f, g} := fxgy − fygx for f, g ∈ P . If Jac(f, g) denotes the
Jacobian matrix and j(f, g) the Jacobian determinant,

Jac(f, g) :=

[
fx fy
gx gy

]
, j(f, g) := det Jac(f, g),

then {f, g} = j(f, g). Denote by Vec(A2) the polynomial vector fields on affine
2-space A2 = K2, i.e. the derivations of K[x, y]:

Vec(A2) := {p∂x + q∂y | p, q ∈ K[x, y]} = Der(K[x, y]).

There is a canonical homomorphism of Lie algebras

µ : P → Vec(A2), h 7→ Dh := hx∂y − hy∂x,
with kernel kerµ = K.

The next lemma lists some properties of the Lie algebra P . These results are
essentially known, see e.g. [NN88]. If L is any Lie algebra and X ⊂ L a subset, we
define the centralizer of X by

centL(X) := {z ∈ L | [z, x] = 0 for all x ∈ X},
and we shortly write cent(L) for the center of L.

Lemma 2.1. (a) The center of P consists exactly of the constants K ⊂ P .
(b) If f, g ∈ P are such that {f, g} = 0, then f, g ∈ K[h] for some h ∈ K[x, y].
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(c) If f, g ∈ P such that {f, g} 6= 0, then f, g are algebraically independent in
K[x, y], and centP (f) ∩ centP (g) = K.

(d) P is generated, as a Lie algebra, by {x, x3, y2}.
Proof. (a) is easy and left to the reader.

(b) Consider the morphism ϕ = (f, g) : A2 → A2. Then C := ϕ(A2) ⊂ A2 is an
irreducible rational curve, and we have a factorization

ϕ : A2 h−−−−→ A1 η−−−−→ C ⊂ A2

where η is the normalization of C. It follows that f, g ∈ K[h].
(c) It is clear that f, g are algebraically independent, i.e. tdegK K(f, g) = 2.

Equivalently, K(x, y)/K(f, g) is a finite algebraic extension. Now assume that
{h, f} = {h, g} = 0. Then the derivation Dh vanishes on K[f, g], hence on K[x, y].
Thus Dh = 0 and so h ∈ K.

(d) Denote by Pd := K[x, y]d the homogeneous part of degree d. Let L ⊂ P be
the Lie subalgebra generated by {x, x3, y2}. We first use the equations

{x, y} = 1, {x, y2} = 2y, {x3, y} = 3x2, {x2, y2} = 4xy, {x3, y2} = 6x2y

to show that K⊕P1⊕P2 ⊂ L and that x2y ∈ L. Now the claim follows by induction
from the relations

{xn, x2y} = nxn+1 and {xrys, y2} = 2rxr−1ys+1.

�

Divergence. The next lemma should also be known. Recall that the divergence
DivD of a vector field D = p∂x + q∂y ∈ Vec(A2) is defined by DivD := px + qy ∈
K[x, y]. Define

Vec0(A2) := {D ∈ Vec(A2) | DivD = 0} ⊂ Vecc(A2) := {D ∈ Vec(A2) | DivD ∈ K}.
The Lie algebra homomorphism µ : P → Vec(A2), f 7→ Df , has its image in

Vec0(A2), because DivDf = 0.

Lemma 2.2. Let D be a non-trivial derivation of K[x, y].

(a) The kernel K[x, y]D is either K or K[f ] for some f ∈ K[x, y].
(b) If DivD = 0, then D = Dh for some h ∈ K[x, y]. In particular, µ(P ) =

Vec0(A2).

Now assume that D = Df for some non-constant f ∈ K[x, y] and that D(g) = 1
for some g ∈ K[x, y].

(c) Then K[x, y]D = K[f ].
(d) If D is locally nilpotent, then K[x, y] = K[f, g].

Proof. (a) See [NN88] Theorem 2.8.
(b) Let D = f∂x + g∂y, then DivD = fx + gy = 0 implies that there exists

h ∈ K[x, y] such that f = hy, g = −hx.
(c) It is obvious that ker(D) ⊃ K[f ], hence, by (a), one has ker(D) = K[h] ⊃

K[f ]. Thus f = F (h) for some F ∈ K[t] and thenDf (g) = DF (h)(g) = F ′(h)Dh(g) =
1 which implies that F is linear.

(d) Let G be an affine algebraic group, X an affine variety and ϕ : X → G a
G-equivariant retraction. Then one has O(X) = ϕ∗(O(G)) ⊗ O(X)G. In our case
we get K[x, y] = O(A2) = O(G)⊗O(A2)G = K[g]⊗K[f ]. �
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Automorphisms of the Poisson algebra. Denote by AutLA(P ) the group of
Lie algebra automorphisms of P . There is a canonical homomorphism

p : AutLA(P )→ K∗, ϕ 7→ ϕ(1),

which has a section s : K∗ → AutLA(P ) given by s(t)|K[x,y]n := t1−n idK[x,y]n where
K[x, y]n ⊂ K[x, y] denotes the subspace of homogeneous polynomials of degree n.
Thus AutLA(P ) is a semidirect product AutLA(P ) = SAutLA(P ) oK∗ where

SAutLA(P ) := ker p = {α ∈ AutLA(P ) | α(1) = 1}.
Lemma 2.3. Every automorphism α ∈ AutLA(P ) is determined by α(1), α(x) and
α(y), and then K[x, y] = K[α(x), α(y)].

Proof. Replacing α by the composition α◦ s(α(1)−1) we can assume that α(1) = 1.
We will show that α(xn) = α(x)n and α(yn) = α(y)n for all n ≥ 0. Then the

first claim follows from Lemma 2.1(d).
By induction, we can assume that α(xj) = α(x)j for j < n. We have {xn, y} =

nxn−1 and so {α(xn), α(y)} = nα(xn−1) = nα(x)n−1. On the other hand, we
get {α(x)n, α(y)} = nα(x)n−1{α(x), α(y)} = nα(x)n−1, hence the difference h :=
α(xn)− α(x)n belongs to the kernel of the derivation Dα(y) : f 7→ {f, α(y)}. Since
Dα(y) is locally nilpotent, we get from Lemma 2.2(c)–(d) that kerDα(y) = K[α(y)]
and that K[α(x), α(y)] = K[x, y]. This already proves the second claim and shows
that h is a polynomial in α(y).

Since {α(xn), α(x)} = α({xn, x}) = 0 and {α(x)n, α(x)} = nα(x)n−1{α(x), α(x)}
we get {h, α(x)} = 0 which implies that h ∈ K.

In the same way, using {x, xy} = x and {y, xy} = −y, we find α(xy)−α(x)α(y) ∈
K. Hence

nα(xn) = {α(xn), α(xy)} = {α(x)n, α(x)α(y)} = nα(x)n,

and so α(xn) = α(x)n. By symmetry, we also get α(yn) = α(y)n. �
Automorphisms of affine 2-space. Denote by Aut(K[x, y]) the group of K-

algebra automorphisms of K[x, y]. We have a canonical identification Aut(A2)
∼−→

Aut(K[x, y])op given by ϕ 7→ ϕ∗. For ρ ∈ Aut(K[x, y]) we will use the notation
ρ = (f, g) in case ρ(x) = f and ρ(y) = g, which implies that K[x, y] = K[f, g]. Note
that the Jacobian determinant defines a homomorphism

j : Aut(K[x, y])→ K∗, ρ 7→ j(ρ) := j(ρ(x), ρ(y))

whose kernel is denoted by SAut(K[x, y]).
We can consider Aut(K[x, y]) and AutLA(P ) as subgroups of the K-linear auto-

morphisms GL(K[x, y]).

Lemma 2.4. As subgroups of GL(K[x, y]) we have SAutLA(P ) = SAut(K[x, y]).

Proof. (a) Let µ be an endomorphism of K[x, y] and put Jac(µ) := Jac(µ(x), µ(y)).
For any f, g ∈ K[x, y] we have Jac(µ(f), µ(g)) = µ(Jac(f, g)) Jac(µ), because

∂

∂x
µ(f) =

∂f

∂x
(µ(x), µ(y))

∂µ(x)

∂x
+
∂f

∂y
(µ(x), µ(y))

∂µ(y)

∂x

= µ(
∂f

∂x
)
∂µ(x)

∂x
+ µ(

∂f

∂y
)
∂µ(y)

∂x
.

It follows that {µ(f), µ(g)} = µ({f, g})j(µ). This shows that SAut(K[x, y]) ⊂
SAutLA(P ).
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(b) Now let α ∈ SAutLA(P ). Then j(α(x), α(y)) = {α(x), α(y)} = α(1) = 1 and,
by Lemma 2.3, K[α(x), α(y)] = K[x, y]. Hence, we can define an automorphism
ρ ∈ SAut(K[x, y]) by ρ(x) := α(x) and ρ(y) := α(y). From (a) we see that ρ ∈
SAutLA(P ), and from Lemma 2.3 we get α = ρ, hence α ∈ SAut(K[x, y]). �
Remark 2.5. The first part of the proof above shows the following. If f, g ∈ P are
such that {f, g} = 1, then the K-algebra homomorphism defined by x 7→ f and
y 7→ g is an injective homomorphism of P as a Lie algebra. (Injectivity follows,
because f, g are algebraically independent.)

Lie subalgebras of P . The subspace

P≤2 := K ⊕ P1 ⊕ P2 = K ⊕Kx⊕Ky ⊕Kx2 ⊕Kxy ⊕Ky2 ⊂ P
is a Lie subalgebra. This can be deduced from the following Lie brackets which we
note here for later use.

{x2, xy} = 2x2, {x2, y2} = 4xy, {y2, xy} = −2y2;(1)

{x2, x} = 0, {xy, x} = −x, {y2, x} = −2y,(2)

{x2, y} = 2x, {xy, y} = y, {y2, y} = 0;(3)

{x, y} = 1.(4)

Moreover, P2 = Kx2 ⊕ Kxy ⊕ Ky2 is a Lie subalgebra of P≤2 isomorphic to sl2,
and P1 = Kx⊕Ky is the two-dimensional simple P2-module.

From Remark 2.5 we get the following lemma.

Lemma 2.6. Let f, g ∈ K[x, y] such that {f, g} = 1. Then 〈1, f, g, f2, fg, g2〉 ⊂ P
is a Lie subalgebra isomorphic to P≤2. An isomorphism is induced from the K-
algebra homomorphism P → P defined by x 7→ f, y 7→ g.

Definition 2.7. For f, g ∈ K[x, y] such that {f, g} ∈ K∗ we put

Pf,g := 〈1, f, g, f2, fg, g2〉 ⊂ P.
We have just seen that this is a Lie algebra isomorphic to P≤2. Clearly, Pf,g = Pf1,g1
if 〈1, f, g〉 = 〈1, f1, g1〉. Denoting by radL the solvable radical of the Lie algebra L
we get

radPf,g = 〈1, f, g〉 and Pf,g/ radPf,g ' sl2 .

Proposition 2.8. Let Q ⊂ P be a Lie subalgebra isomorphic to P≤2. Then K ⊂ Q,
and Q = Pf,g for every pair f, g ∈ L such that 〈1, f, g〉 = radQ. In particular,
{f, g} ∈ K∗.
Proof. We first show that cent(Q) = K. In fact, Q contains elements f, g such that
{f, g} 6= 0. If h ∈ cent(Q), then h ∈ centP (f) ∩ centP (g) = K, by Lemma 2.1(c).

Now choose an isomorphism θ : P≤2
∼−→ Q. Then θ(K) = K, and replacing θ by

θ ◦ s(t) with a suitable t ∈ K∗ we can assume that θ(1) = 1. Setting f := θ(x), g :=
θ(y) we get {f, g} = 1, and putting f0 := θ(x2), f1 := θ(xy), f2 := θ(y2) we find

{f1, f} = θ{xy, x} = θ(−x) = −f = {fg, f}.
Similarly, {f1, g} = {fg, g}, hence fg = f1 + c ∈ Q, by Lemma 2.1(c). Next we
have

{f0, f} = 0 and {f0, g} = θ({x2, y}) = θ(2x) = 2f = {f2, g}.
Hence f2 = f0 + d, and thus f2 ∈ Q. A similar calculation shows that g2 ∈ Q, so
that we finally get Q = Pf,g. �
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Characterization of P≤2. The following lemma gives a characterization of the
Lie algebras isomorphic to P≤2.

Lemma 2.9. Let Q be a Lie algebra containing a subalgebra Q0 isomorphic to sl2.
Assume that

(a) Q = Q0 ⊕ V2 ⊕ V1 as a Q0-module where the Vi are simple of dimension i,
(b) V1 is the center of Q, and
(c) [V2, V2] = V1.

Then Q is isomorphic to P≤2.

Proof. Choosing an isomorphism of P2 = 〈x2, xy, y2〉 with Q0 we find a basis
(a0, a1, a2) of Q0 with relations

(1′) [a0, a1] = 2a0, [a0, a2] = 4a1, [a2, a1] = −2a2

(see (1) above). Since V2 is a simple two-dimensional Q0-module and Kx ⊕Ky a
simple two-dimensional P2-module we can find a basis (b, c) of V2 such that

[a0, b] = 0, [a1, b] = −b, [a2, b] = −2c,(2′)

[a0, c] = 2b, [a1, c] = c, [a2, c] = 0(3′)

(see (2) and (3) above). Finally, the last assumption (c) implies that

(4′) d := [b, c] 6= 0, hence V1 = Kd.

Comparing the relations (1)–(4) with (1′)–(4′) we see that the linear map P≤2 → Q
given by x2 7→ a0, xy 7→ a1, y2 7→ a2, x 7→ b, y 7→ c, 1 7→ d is a Lie algebra
isomorphism. �

3. Vector fields on affine 2-space

The action of Aut(A2) on vector fields. The group Aut(A2) acts on the vector
fields Vec(A2). If ϕ ∈ Aut(A2) and if the vector fields Vec(A2) are regarded as
sections ξ : A2 → TA2 of the tangent bundle, then ϕ∗(ξ) := (dϕ)−1 ◦ ξ ◦ϕ. Writing
ξ = p∂x + q∂y and ϕ = (f, g), we get

(∗) ϕ∗(ξ) =
1

j(ϕ)
((gyϕ

∗(p)− fyϕ∗(q)) ∂x + (−gxϕ∗(p) + fxϕ
∗(q)) ∂y) .

In particular,

ϕ∗(∂x) =
1

j(ϕ)
(gy∂x − gx∂y) and ϕ∗(∂y) =

1

j(ϕ)
(−fy∂x + fx∂y)

In fact, for every u = (a, b) ∈ A2 we have dϕu◦ϕ∗(ξ)u = ξϕ(u). If ϕ∗(ξ) = p̃∂x+ q̃∂y,
this means that [

fx(u) fy(u)
gx(u) gy(u)

] [
p̃(u)
q̃(u)

]
=

[
p(ϕ(u))
q(ϕ(u))

]
.

Hence [
p̃(u)
q̃(u)

]
=

1

j(ϕ(u))

[
gy(u) −fy(u)
−gx(u) fx(u)

] [
p(ϕ(u))
q(ϕ(u))

]

and the claim follows.

Remark 3.1. If ξ ∈ Vec(A2) is considered as a derivation D of K[x, y], and if
α = ϕ∗ ∈ Aut(K[x, y]), then the derivation corresponding to ϕ∗(ξ) is given by
α∗D = α ◦D ◦ α−1.
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Remark 3.2. If ϕ : A2 → A2 is étale, i.e. j(ϕ) ∈ K∗, then the pull-back ϕ∗(ξ) is well-
defined for every vector field ξ : A2 → TA2. It satisfies the equation dϕ◦ϕ∗(ξ) = ξ◦ϕ
and it is given by the formula (∗). In terms of derivations, this corresponds to the
well-known fact that for an étale extension α : A ↪→ B every derivation D of A
extends uniquely to a derivation of α∗(D) of B satisfying α∗(D) ◦ α = α ◦D.

It is not difficult to see that the map

ϕ∗ : Vec(A2)→ Vec(A2), ξ 7→ ϕ∗(ξ),

is an injective homomorphism of Lie algebras. In fact, if α = ϕ∗ ∈ End(K[x, y])
and D the derivation of K[x, y] that corresponds to ξ, then we find

α∗([D1, D2]) ◦ α = α ◦ [D1, D2] = α ◦D1 ◦D2 − α ◦D2 ◦D1

= α∗(D1) ◦ α ◦D2 − α∗(D2) ◦ α ◦D1

= α∗(D1) ◦ α∗(D2) ◦ α− α∗(D2) ◦ α∗(D1) ◦ α
= [α∗(D1), α∗(D2)] ◦ α,

hence the claim.

Recall that Vecc(A2) ⊂ Vec(A2) are the vector fields D with DivD ∈ K. Clearly,
the divergence Div : Vecc(A2) → K is a character with kernel Vec0(A2), and we
have the decomposition

Vecc(A2) = Vec0(A2)⊕KE where E := x∂x + y∂y is the Euler field.

Lemma 3.3. If ϕ : A2 → A2 is étale, then ϕ∗(Dh) = j(ϕ)−1Dϕ∗(h). Moreover,

Div(ϕ∗(E)) = 2, and so ϕ∗(Vec0(A2)) ⊂ Vec0(A2) and ϕ∗(Vecc(A2)) ⊂ Vecc(A2).
In particular, the homomorphism µ : P → Vec(A2) is equivariant with respect to
the group SAut(K[x, y]) = SAutLA(P ).

Proof. Put α := ϕ∗ ∈ End(K[x, y]). We have α(Dh) ◦ α = α ◦Dh, hence

α(Dh)(α(f)) = α(Dh(f)) = α(j(h, f)) = j(α)−1j(α(h), α(f)) =

= j(α)−1Dα(h)(α(f)).

From formula (∗) we get α(E) = 1
j(α) ((gyf − fyg)∂x + (−gxf + fxg)∂y) which im-

plies that Divα(E) = 2. �

Remark 3.4. Let ϕ : A2 → A2 be étale. If ϕ∗ : Vec0(A2) → Vec0(A2) is an iso-
morphism, then so is ϕ. In fact, ϕ∗(Dc·h) = Dϕ∗(h) for c := j(ϕ) ∈ K∗, show-
ing that every f ∈ K[x, y] is of the form ϕ∗(h) up to a constant. It follows that
ϕ∗ : K[x, y]→ K[x, y] is surjective, hence an isomorphism.

Remark 3.5. The lemma above implies that we have canononical homomorphisms

Aut(K[x, y])→ AutLA(Vec(A2)),

Aut(K[x, y])→ AutLA(Vecc(A2)),

Aut(K[x, y])→ AutLA(Vec0(A2)).

We will see in Theorem 4.5 that these are all isomorphisms.
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Lie subalgebras of Vec(A2). Let Aff(A2) denote the group of affine transforma-
tions of A2, x 7→ Ax+ b, where A ∈ GL2(K) and b ∈ K2. The determinant defines
a character det : Aff(A2)→ K∗ whose kernel will be denoted by SAff(A2). For the
corresponding Lie algebras we write saff2 := Lie SAff(A2) ⊂ aff2 := Lie Aff(A2).
There is a canonical embedding aff2 ⊂ Vec(A2) which identifies aff2 with the Lie
subalgebra

〈∂x, ∂y, x∂x + y∂y, x∂x − y∂y, x∂y, y∂x〉 ⊂ Vecc(A2),

and saff2 with

µ(Px,y) = 〈∂x, ∂y, x∂x − y∂y, x∂y, y∂x〉 ⊂ Vec0(A2).

Note that the Euler field E = x∂x + y∂y ∈ aff2 is determined by the condition that
E acts trivially on sl2 and that [E,D] = −D for D ∈ rad(saff2) = K∂x ⊕K∂y. We
also remark that the centralizer of saff2 in Vec(A2) is trivial:

centVec(A2)(saff2) = (0).

In fact, centVec(A2)({∂x, ∂y)} = K∂x ⊕K∂y, and (K∂x ⊕K∂y)sl2 = (0).

Let ϕ = (f, g) : A2 → A2 be étale, and assume, for simplicity, that j(f, g) = 1.
From formula (∗) we get

ϕ∗(∂x) = gy∂x − gx∂y = −Dg, ϕ∗(∂y) = −fy∂x + fx∂y = Df ,

ϕ∗(x∂y) = fDf = 1
2Df2 , ϕ∗(y∂x) = −gDg = − 1

2Dg2 ,

ϕ∗(x∂x) = −fDg, ϕ∗(y∂y) = gDf , ϕ∗(x∂x − y∂y) = −Dfg.

This shows that for an étale map ϕ = (f, g) we obtain

ϕ∗(aff2) = 〈Df , Dg, Df2 , Dg2 , fDg, gDf 〉,
ϕ∗(saff2) = 〈Df , Dg, Df2 , Dg2 , Dfg〉 = µ(Pf,g)

Proposition 3.6. Let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to saff2. Then
there is an étale map ϕ such that L = ϕ∗(saff2). More precisely, if (Df , Dg) is a
basis of rad(L), then L = 〈Df , Dg, Df2 , Dg2 , Dfg〉, and one can take ϕ = (f, g).

Proof. We first remark that L ⊂ Vec0(A2), because saff2 has no non-trivial charac-
ter. By Proposition 2.8 it suffices to show that Q := µ−1(L) ⊂ P is isomorphic to
P≤2. We fix a decomposition L = L0 ⊕ rad(L) where L0 ' sl2. It is clear that the

Lie subalgebra Q̃ := µ−1(L0) ⊂ P contains a copy of sl2, i.e. Q̃ = Q0 ⊕K where
Q0 ' sl2. Hence, as a Q0-module, we get Q = Q0 ⊕ V2 ⊕ K where V2 is a two-
dimensional irreducible Q0-module which is isomorphically mapped onto rad(L)
under µ. Since {rad(L), rad(L)} = (0) we have {V2, V2} ⊂ K. Now the claim follows
from Lemma 2.9 if we show that {V2, V2} 6= (0).

Assume that {V2, V2} = (0). Choose a sl2-triple (e0, h0, f0) in Q0 and a basis
(f, g) of V2 such that {e0, f} = g and {e0, g} = 0. Since {f, g} = 0 we get from
Lemma 2.1(b) that f, g ∈ K[h] for some h ∈ K[x, y], i.e. f = p(h) and g = q(h)
for some polynomials p, q ∈ K[t]. But then 0 = {e0, g} = {e0, q(h)} = q′(h){e0, h}
and so {e0, h} = 0. This implies that g = {e0, f} = {e0, p(h)} = p′(h){e0, h} = 0, a
contradiction. �

Remark 3.7. The above description of the Lie subalgebras L isomorphic to saff2
also gives a Levi decomposition of L. In fact, (Df , Dg) is a basis of rad(L) and
L0 := 〈Df2 , Dg2 , Dfg〉 is a subalgebra isomorphic to sl2. The following corollary
shows that every Levi decomposition is obtained in this way.
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Corollary 3.8. Let L ⊂ Vecc(A2) be a Lie subalgebra isomorphic to saff2, and
let L = rad(L) ⊕ L0 be a Levi decomposition. Then there exist f, g ∈ K[x, y] such
that rad(L) = 〈Df , Dg〉 and L0 = 〈Df2 , Dfg, Dg2〉. Moreover, if L′ ⊂ Vecc(A2) is
another Lie subalgebra isomorphic to saff2 and if L′ ⊃ L0, then L′ = L.

Proof. We can assume that L = saff2 = 〈Dx, Dy, Dx2 , Dy2 , Dxy〉. Then every Lie
subalgebra L0 ⊂ L isomorphic to sl2 is the image of sl2 = 〈Dx2 , Dy2 , Dxy〉 under
conjugation with an element α of the solvable radical R of SAff2. As a subgroup of
Aut(K[x, y]) the elements of R are the translations α = (x+ a, y + b), and we get
rad(L) = 〈Dx+a, Dy+b〉 and α(sl2) = 〈D(x+a)2 , D(y+b)2 , D(x+a)(y+b〉 as claimed.

For the last statement, we can assume that L′ = 〈Df , Dg, Df2 , Dg2 , Dfg〉 such
that 〈Df2 , Dg2 , Dfg〉 = sl2. This implies that 〈f2, g2, fg, 1〉 = 〈x2, y2, xy, 1〉, and
the claim follows. �

Proposition 3.9. Let M ⊂ Vecc(A2) be a Lie subalgebra isomorphic to aff2. Then
there is an étale map ϕ such that M = ϕ∗(aff2). More precisely, if (Df , Dg) is a
basis of rad([M,M ]), then M = 〈Df , Dg, fDf , gDg, gDf , fDg〉, and one can take
ϕ = (f, g).

Proof. The subalgebra M ′ := [M,M ] is isomorphic to saff, hence, by Proposi-
tion 3.6, M ′ = ϕ∗(saff2) for an étale map ϕ = (f, g) where we can assume that
j(α) = 1. We want to show that ϕ∗(aff2) = M . Consider the decomposition
M = J ⊕M0 ⊕ KD where J = rad(M ′), M0 is isomorphic to sl2, and D is the
Euler-element acting trivially on M0. We have ϕ∗(aff2) = M ′ ⊕ KE where E is
the image of the Euler element of aff2. Since Vecc(A2) = Vec0(A2) ⊕KD′ for any
D′ ∈ Vecc(A2) with DivD′ 6= 0 we can write D = aE + F with some a ∈ K and
F ∈ Vec0(A2), i.e. F = Dh for some h ∈ K[x, y].

By construction, F = D − aE commutes with M0. Since M0 = 〈Df2 , Dg2 , Dfg〉
we get {h, f2} = c where c ∈ K. Thus c = {h, f2} = 2f{h, f} which implies that
{h, f} = 0. Similarly, we find {h, g} = 0, hence h is in the center of µ−1(M ′) =
Pf,g ⊂ P . Thus, by Lemma 2.1(c), h ∈ K and so Dh = 0 which implies D = aE. �

4. Vector fields and the Jacobian Conjecture

The Jacobian Conjecture. Recall that the Jacobian Conjecture in dimension n
says that an étale morphism ϕ : An → An is an isomorphism.

Theorem 4.1. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(ii) All Lie subalgebras of P isomorphic to P≤2 are equivalent under AutLA(P ).
(iii) All Lie subalgebras of Vecc(A2) isomorphic to saff2 are conjugate under

Aut(A2).
(iv) All Lie subalgebras of Vecc(A2) isomorphic to aff2 are conjugate under

Aut(A2).

For the proof we need to compare the automorphisms of P with those of the
image µ(P ) = Vec0(A2) ' P/K. Since K is the center P , we have a canonical
homomorphism F : AutLA(P )→ AutLA(P/K), ϕ 7→ ϕ̄.

Lemma 4.2. The map F : AutLA(P )→ AutLA(P/K) is an isomorphism.
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Proof. If ϕ ∈ kerF , then ϕ(x) = x+a, ϕ(y) = y+b where a, b ∈ K. By Lemma 2.4,
the K-algebra automorphism α of K[x, y] defined by x 7→ x+ a, y 7→ y + b is a Lie
algebra automorphism of P , and ϕ = α by Lemma 2.3. But then ϕ(x2) = (x+a)2 =

x2 + 2ax + a2, and so ϕ̄(x2) = x2 + 2ax. Therefore, a = 0, and similarly we get
b = 0, hence ϕ = idP .

Put P̄ := P/K and let ρ : P̄
∼−→ P̄ be a Lie algebra automorphism. Then L̄ :=

ρ(P̄≤2) ⊂ P̄ is a Lie subalgebra isomorphic to saff2 and thus L := p−1(L̄) is
a Lie subalgebra of P isomorphic to P≤2, by Proposition 2.8. Choose f, g ∈ L
such that f̄ = ρ(x̄) and ḡ = ρ(ȳ). Then 〈1, f, g〉 = rad(L), and so L = Pf,g, by
Proposition 2.8. It follows that the map µ : P → P defined by x 7→ f, y 7→ g
is an injective endomorphism of P (Remark 2.5), and that µ̄ = ρ. Since ρ is an
isomorphism the same holds for µ. �
Proof of Theorem 4.1. (i)⇒(ii): If L ⊂ P is isomorphic to P≤2, then L = Pf,g for
some f, g ∈ K[x, y] such that {f, g} = 1 (Proposition 2.8). By (i) we get K[x, y] =
K[f, g], and so the endomorphism x 7→ f, y 7→ g of K[x, y] is an isomorphism of P ,
mapping P≤2 to L.

(ii)⇒(iii): If L̄ ⊂ Vecc(A2) is a Lie subalgebra isomorphic to saff2, then L̄ =
µ(Pf,g) for some f, g ∈ K[x, y], by Proposition 3.6. By (ii), Pf,g = α∗(P≤2) for
some α ∈ SAutLA(P ) = SAut(K[x, y]). Hence L̄ = µ(α∗(P̄≤2)) = ᾱ(saff2), by
Lemma 3.3.

(iii)⇒(iv): Let M ⊂ Vecc(A2) be a Lie subalgebra isomorphic to aff2, and set
M ′ := [M,M ] ' saff2. By (iii) there is an automorphism ϕ ∈ Aut(A2) such that
M ′ = ϕ∗(saff2). It follows that ϕ∗(aff2) = M since M is determined by rad(M ′) as
a Lie subalgebra, by Proposition 3.9.

(iv)⇒(i): Let ϕ := (f, g) : A2 → A2 be an étale morphism. Then M := ϕ∗(aff2) ⊂
Vecc(A2) is a Lie subalgebra isomorphic to aff2 (see Lemma 3.3). By assumption
(iv), there is an automorphism ψ ∈ Aut(A2) such that ψ∗(aff2) = M . It follows
that ψ−1 ◦ ϕ is an étale morphism which induces an automorphism of aff2, hence
of saff2, and thus of rad(saff2) = K∂x ⊕ K∂y. This implies that ψ−1 ◦ ϕ is an
automorphism, and the claim follows. �
Remark 4.3. It is not true that the Lie subalgebras of P or of Vecc(A2) isomorphic
to sl2 are equivalent, respectively conjugate. This can be seen from the example
S = Kx2y ⊕ Kxy ⊕ Ky ⊂ P which is isomorphic to sl2, but not equivalent to
Kx2 ⊕Kxy ⊕Ky2 under AutLA(P ). In fact, the element x2y does not act locally
finitely on P .

Algebraic Lie algebras. If an algebraic group G acts on an affine variety X we
get a canonical anti-homomorphism of Lie algebras Φ: LieG→ Vec(X) defined in
the usual way:

LieG 3 A 7→ ξA with (ξA)x := dϕx(A) for x ∈ X,
where ϕx : G → X is the orbit map g 7→ gx. A Lie algebra L ⊂ Vec(X) is called
algebraic if L is contained in Φ(LieG) for some action of an algebraic group G on
X. It is shown in [CD03] that L is algebraic if and only if L acts locally finitely on
Vec(X). With this result we get the following consequence of our Theorem 1.

Corollary 4.4. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(ii) All Lie subalgebras of Vecc(A2) isomorphic to saff2 are algebraic.



LIE ALGEBRAS OF VECTOR FIELDS AND THE JACOBIAN CONJECTURE 41

(iii) All Lie subalgebras of Vecc(A2) isomorphic to aff2 are algebraic.

Proof. It is clear that the equivalent statements (i), (ii) or (iii) of Theorem 1 imply
(ii) and (iii) from the corollary. It follows from the Propositions 3.6 and 3.9 that
every Lie subalgebra L isomorphic to saff2 is contained in a Lie subalgebra Q
isomorphic to aff2, hence (iii) implies (ii). It remains to prove that (ii) implies (i).

We will show that (ii) implies that L is equivalent to saff2. Then the claim follows
from Theorem 1. By (ii), there is a connected algebraic group G acting faithfully
on A2 such that Φ(LieG) contains L. Therefore, LieG contains a subalgebra s
isomorphic to sl2, and so G contains a closed subgroup S such that LieS = s. Since
every action of SL2 on A2 is linearizable (see [KP85]), there is an automorphism ϕ
such that ϕ∗(s) = sl2 = 〈x∂y, y∂x, x∂x − y∂y〉. But this implies, by Corollary 3.8,
that ϕ∗(L) = saff2. �

Automorphisms of vector fields. We have seen in Lemma 2.4 that SAutLA(P ) =
SAut(K[x, y]). In this last section we describe the automorphism groups of the Lie
algebras Vec(A2), Vecc(A2) and Vec0(A2).

Theorem 4.5. There are canonical isomorphisms

Aut(A2)
∼−→ AutLA(Vec(A2))

∼−→ AutLA(Vecc(A2))
∼−→ AutLA(Vec0(A2)).

For the proof we need the following two results. The first one is certainly well-
known. Recall that saff2 = [aff2, aff2] ⊂ aff2 is invariant under all automorphisms
of the Lie algebra aff2.

Lemma 4.6. The canonical homomorphisms

Aff2
Ad−−−−→
'

AutLA(aff2)
res−−−−→
'

AutLA(saff2)

are isomorphisms.

Proof. We write the elements of Aff2 in the form (v, g) with v ∈ T = (K+)2 and
g ∈ GL2 where (v, g)x = gx+v for x ∈ A2. It follows that (v, g)(w, h) = (v+gw, gh).
Similarly, (a,A) ∈ aff2 means that a ∈ t = (K)2 and A ∈ gl2, and (a,A)x = Ax+a.
For the adjoint representation of g ∈ GL2 and of v ∈ T on aff2 we get

Ad(g)(a,A) = (ga, gAg−1) and Ad(v)(a,A) = (a−Av,A),

and thus, for (b, B) ∈ aff2,

(∗∗) ad(B)(a,A) = (Ba, [B,A]) and ad(b)(a,A) = (a−Ab,A).

Now let θ be an automorphism of the Lie algebra saff2. Then θ(t) = t, because t is
the solvable radical of saff2. Since g := θ|t ∈ GL2, composing θ with Ad(g−1), we
can assume that θ is the identity on t. This implies that θ(a,A) = (a+ `(A), θ̄(A))
where ` : sl2 → t is a linear map and θ̄ : sl2 → sl2 is a Lie algebra automorphism.

From (∗∗) we get ad(b, B)(a, 0) = ad(B)(a, 0) = (Ba, 0) for all a ∈ t, hence

(Ba, 0) = θ(Ba, 0) = θ(ad(B)(a, 0)) =

= ad(θ(B))(a, 0) = ad(θ̄(B))(a, 0) = (θ̄(B)a, 0).

Thus θ̄(B) = B, i.e. θ(a,A) = (a+ `(A), A). For c := `(E) we obtain

θ(a, λE) = (a+ λc, λE) = Ad(−c)(a, λE).
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Thus we can assume that θ is the identity on KE ⊂ affn. Since Mn is the cen-
tralizer of KE in affn this implies that θ(Mn) = Mn, hence θ(0, A) = (0, θ(A)) =
(0, θ̄(A)) = (0, A). As a consequence, θ = id, and the claim follows. �

Lemma 4.7. If θ is an endomorphism of the Lie algebra Vec0(A2) which is the
identity on saff2, then θ is the identity.

Proof. It follows from Lemma 2.1(d) and Lemma 2.2(b) that Vec0(A2) is generated
by the vector fields ∂y, x2∂y, and y∂x. So it suffices to show that θ(x2dy) = x2dy.

Put D := θ(x2dy). Since [∂y, D] = θ([∂y, x
2∂y]) = 0 we see that D = h(x)∂x +

f(x)∂y. But 0 = DivD = hx, and so D = a∂x + f(x)∂y.
Now [∂x, D] = θ([∂x, a∂x + x2∂y]) = θ(2x∂y) = 2x∂y = [∂x, x

2∂y]. Hence D =
a∂x + x2∂y + b∂y. Finally, [x∂y, D] = −a∂y = θ([x∂y, x

2∂y]) = 0, hence a = 0,
and similarly, [y∂x, D] = 2x∂y − b∂x = θ([y∂x, x

2∂y]) = θ(2x∂y) = 2x∂y, hence
b = 0. �
Proof of Theorem 4.5. (a) The fact that Aut(A2)→ AutLA(Vec(A2)) is an isomor-
phism goes back to Kulikov (see proof of theorem 4, [Kul92]). For another proof
see [Bav13].

(b) It follows from (a) that we have a canonical homomorphism, by restriction,

AutLA(Vec(A2))→ AutLA(Vecc(A2)),

and since Vec0(A2) ⊂ Vecc(A2) is an ideal of finite codimension and is simple as a
Lie algebra we also get a homomorphism

AutLA(Vecc(A2))→ AutLA(Vec0(A2))

which is easily seen to be injective. Thus it remains to show that the canonical
homomorphism ω : Aut(A2)→ AutLA(Vec0(A2)) is an isomorphism.

(c) It is clear that ω is injective. Let θ be an automorphism of Vec0(A2). It
follows from Proposition 3.6 that there is an étale map ϕ such that ϕ∗(saff2) =
θ(saff2). Hence the homomorphism θ−1 ◦ ϕ∗ maps saff2 isomorphically onto itself.
This implies, by Lemma 4.6, that (θ−1 ◦ ϕ∗)|saff2 = Ad(ψ) that for a suitable
ψ ∈ Aff2. By definition, ψ∗|saff2 = Ad(ψ)−1, and so the composition θ−1 ◦ ϕ∗ ◦ ψ∗
is the identity on saff2, hence the identity on Vec0(A2), by Lemma 4.7. Therefore,
by Remark 3.4, ϕ is an isomorphism, and so θ = ϕ∗ ◦ ψ∗ belongs to the image of
ω : Aut(A2)→ AutLA(Vec0(A2)). �
Remark 4.8. In [KReg14] our Theorem 4.5 is generalized to any dimension, using
a completely different approach.
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CHARACTERIZATION OF n-DIMENSIONAL NORMAL AFFINE

SLn-VARIETIES

ANDRIY REGETA

Abstract. We show that any normal irreducible affine n-dimensional SLn-

variety X is determined by its automorphism group in the category of normal
irreducible affine varieties: if Y is an irreducible affine normal algebraic variety

such that Aut(X) ∼= Aut(Y ) as ind-groups, then Y ∼= X as varieties. If we

drop the condition of normality on Y , then X is not uniquely determined and
we classify all such varieties. In case n ≥ 3, all the above results hold true if we

replace Aut(X) by U(X), where U(X) is the subgroup of Aut(X) generated

by all one-dimensional unipotent subgroups. In dimension 2 we have some very
interesting exceptions.

1. Introduction and Main Results

Our base field is the field of complex numbers C. For an affine variety X the
automorphism group Aut(X) has the structure of an ind-group. We will shortly re-
call the basic definitions and results in Section 2. The classical example is Aut(An),
n > 1, the group of automorphisms of the affine n-space An. Recently, Hanspeter
Kraft proved the following result which shows that the affine n-space is deter-
mined by its automorphism group (see [Kr15]).

Theorem 0. Let Y be a connected affine variety. If Aut(Y ) ∼= Aut(An) as ind-
groups, then Y ∼= An as varieties.

In this paper we prove a similar result for some other varieties which we are
going to define now. Let d > 1. Consider the action of µd = {ξ ∈ C∗|ξd = 1} on An
by scalar multiplication and denote by π : An → Ad,n := An/µd the quotient. This
means that Ad,n is an affine variety with coordinate ring O(Ad,n) = C[x1, ..., xn]µd ,
the algebra of invariants (see [Mu74]). Note that Ad,n is indeed an orbit space,
because µd is finite. For d > 1, Ad,n has an isolated singularity in π(0) and π
induces an étale covering An \ {0} → Ad,n \ {p(0)} with Galois group µd. Later on
we consider only the case d > 1.

Theorem 1. Let X be a normal affine variety such that Aut(X) ∼= Aut(Ad,n) as
ind-group, then we have an isomorphism X ∼= Ad,n as varieties.

The standard representation of SLn on Cn induces an action of SLn on Ad,n for
any d, and we have the following result (see [KRZ17]).

Proposition 1. Let n ≥ 3, and let Y be an affine normal variety of dimension n
with a non-trivial SLn-action. Then Y is SLn -isomorphic to Ad,n for some d ≥ 1.

The author is supported by the Swiss National Science Foundation (Schweizerischer National-

fonds).
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Now we drop the assumption of normality. Note that the ring of regular func-
tions O(Ad,n) equals

⊕∞
k=0 C[x1, ..., xn]dk, where C[x1, ..., xn]dk denotes the homo-

geneous polynomials of degree dk. Consider the affine variety Asd,n with coordinate

ring O(Asd,n) = C⊕⊕∞k=s C[x1, ..., xn]dk ⊂ O(Ad,n), s ≥ 1. Then the induced mor-
phism η : Ad,n → Asd,n is the normalization and has the property that the induced

map η′ : Ad,n \ {?} ∼−→ Asd,n \ {?} is an isomorphism, where ? denotes the points
corresponding to the homogeneous maximal ideals. In fact, η is SLn-equivariant,
and Ad,n \ {?} is an SLn-orbit. We prove the following result.

Theorem 2. Let X be an irreducible affine variety such that Aut(X) and Aut(Ad,n)
are isomorphic as ind-groups, then X ∼= Asd,n as a variety for some s ∈ N.

For n = 2, any irreducible affine normal variety X endowed with a non-trivial
SL2-action is SL2-isomorphic to Ad,2, SL2 /T or SL2 /N(T ) (see [Pop73]), where T
is the standard subtorus of SL2 and N(T ) denotes the normalizer of T .

Theorem 3. Let X be an irreducible variety such that Aut(X) ∼= Aut(SL2 /T )
respectively Aut(X) ∼= Aut(SL2 /N(T )) as ind-groups, then X ∼= SL2 /T respectively
X ∼= SL2 /N(T ) as varieties.

For an affine variety X we denote by U(X) ⊂ Aut(X) the subgroup generated
by the one-dimensional unipotent subgroups. We do not know whether U(X) has
the structure of an ind-subgroup (i.e. whether U(X) ⊂ Aut(X) is closed). That
is why we introduce the definition of an ”algebraic homomorphism”. This is a
homomorphism φ : U(X) → U(Y ) such that for any subgroup U ⊂ U(X), where
U is a closed one-dimensional unipotent subgroup of Aut(X), the image φ(U) ⊂
Aut(Y ) is a closed one-dimensional unipotent subgroup and φ|U : U → φ(U) is an
isomorphism of algebraic groups.

Theorem 4. Let n > 2 and let X be an irreducible affine variety. If there is
a bijective algebraic homomorphism U(X) → U(Ad,n), then X ∼= Asd,n for some
s ≥ 1.

Acknowledgement: The author would like to thank Hanspeter Kraft for his
support during the writing of this paper. The author would also like to thank
Michel Brion who suggested a number of important improvements and Mikhail
Zaidenberg for useful discussions.

2. Preliminaries

The notion of an ind-group goes back to Shafarevich who called such objects
infinite dimensional groups, (see [Sh66]). We refer to [Kum02] and [Kr15] for basic
notions in this context.

Definition 1. By an ind-variety we mean a set V together with an ascending
filtration V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ V such that the following holds:

(1) V =
⋃
k∈N Vk;

(2) each Vk has the structure of an algebraic variety;
(3) for all k ∈ N the subset Vk ⊂ Vk+1 is closed in the Zariski-topology.

A morphism from an ind-variety V =
⋃
k Vk to an ind-variety W =

⋃
mWm is a

map φ : V →W such that for any k there is an m such that φ(Vk) ⊂Wm and such
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that the induced map Vk →Wm is a morphism of algebraic varieties. Isomorphisms
of ind-varieties are defined in the obvious way.

Two filtrations V =
⋃
k∈N Vk and V =

⋃
k∈N V

′
k are called equivalent if for

every k there is an m such that Vk ⊂ V ′m is a closed subvariety as well as V ′k ⊂
Vm. Equivalently, the identity map id : V =

⋃
k∈N Vk → V =

⋃
k∈N V

′
k is an

isomorphism of ind-varieties.
An ind-variety V has a natural topology: a subset S ⊂ V is open, (resp. closed), if

Sk := S∩Vk ⊂ Vk is open, (resp. closed), for all k. Naturally, a locally closed subset
S ⊂ V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all varieties Vk are affine. Throughout this paper we
consider only affine ind-varieties and for simplicity we call them just ind-varieties.

The product of two ind-varieties is defined in the natural way. This allows to
give the following definition.

Definition 2. An ind-variety G is said to be an ind-group if the underlying set G
is a group such that the map G×G→ G, (g, h) 7→ gh−1, is a morphism.

An ind-group G is called connected if for every g ∈ G there is an irreducible
curve C and a morphism C → G whose image contains the neutral element e and
g.

A closed subgroup H of G (i.e. H is a subgroup of G and is a closed subset)
is again an ind-group under the closed ind-subvariety structure on G. A closed
subgroup H of an ind-group G is an algebraic group if and only if H is an algebraic
subset of G.

The proof of the next result can be found in [St13] (see also [FK17]).

Proposition 2. Let X be an affine variety. Then Aut(X) has a natural structure
of an affine ind-group.

Note that in [St13] one can also find the description of the ind-group structure
on Aut(X).

3. Automorphisms

Proposition 3. Any automorphism of Ad,n lifts to an automorphism of Cn.

Proof. Let φ ∈ Aut(Ad,n). First we claim that pi := φ∗(xdi ) and pj := φ∗(xdj ) are
coprime in C[x1, ..., xn], where i 6= j and φ∗ is the pull-back of φ. Let p be a common
factor of pi and pj . Then p̃ :=

∏
g∈µd

gp divides pdi and pdj . By construction it is

clear that p̃ ∈ O(Ad,n), then φ−1(p̃) is a common factor of (φ∗)−1(pdi ) = xd
2

i and

(φ∗)−1(pdj ) = xd
2

j . Hence, p̃ ∈ C and therefore, p ∈ C.

We have φ∗(xdi )φ
∗((xdj )

d−1) = φ∗(xdi x
d(d−1)
j ) = φ∗(xix

d−1
j )d i.e. pip

d−1
j = qd for

some q ∈ O(Ad,n). Because pi is coprime with pj , it follows that pi = qdi for some
qi ∈ C[x1, ..., xn].

The map φ induces an automorphism of Ad,n \ {π(0)} and we call it also by φ.
Recall that the quotient π : An → Ad,n induces an étale covering π̃ : An \ {0} →
Ad,n \ {π(0)}. As An \ {0} is simply connected, it follows that every continous
automorphism of Ad,n\{π(0)} can be lifted to a continous automorphism of An\{0}.
Since both varieties are complex manifolds and the covering is étale, the lift of
a holomorphic automorphism is also holomorphic. Thus, the automorphism φ of
Ad,n \ {π(0)} lifts to a holomorphic automorphism ψ of An \ {0}. Now consider
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qi := ψ∗(xi). This is a holomorphic function on An \ {0} with the property that
qdi = ψ∗(xdi ) = φ∗(xdi ) is a polynomial. It follows that the meromorphic function
ri := qi

pi
is holomorphic outside the zero set of pi and satisfies rdi = 1. This implies

that ri is a constant, hence qi = ωipi for some d-th root of unity ωi, first outside
the zero set of pi and then everywhere. Thus ψ∗(C[x1, ..., xn]) ⊂ C[x1, ..., xn] which
means that ψ is an algebraic morphism An → An. It is an isomorphism because ψ
is bijective. �

Let X be an affine variety, H be a finite group acting on X and let π : X → X/H

be the quotient morphism. Denote by AutH(X) ⊂ Aut(X) the subgroup of all
automorphisms of X which commute with the image of H in Aut(X).

Lemma 1. (a) AutH(X) ⊂ Aut(X) is a closed ind-subgroup,

(b) there is a canonical homomorphism of ind-groups φ : AutH(X)→ Aut(X/H),
(c) if X is normal and contains only finitely many fixed points of H then every

C+-action on X/H lifts to a C+-action on X.

Proof. (a) Consider the homomorphisms φh : Aut(X) → Aut(X), φh(g) = ghg−1.

Then AutH(X) = ∩h∈Hφ−1
h (H), where φ−1

h (H) ⊂ Aut(X) is a closed subvariety.
This proves the claim.

(b) Now let h ∈ H, f ∈ O(X)H and φ ∈ AutH(X). Then φ∗ : O(X)
∼→ O(X)

is an isomorphism and h(φ∗(f)) = φ∗((φ∗)−1 ◦ h ◦ φ∗)(f) = (φ∗ ◦ h′)(f) = φ∗(f)
for some h′ ∈ H. Therefore φ∗(f) ∈ O(X)H , which means that φ induces an
automorphism of X/H.

(c) There is an isomorphism of the space of derivations Der(O(X)) with Hom(Ω1
X ,

O(X)), where Ω1
X denotes the Kähler differential forms on X. By [Ha80, Corollary

1.2], Hom(Ω1
X ,O(X)) is a reflexive sheaf. Hence, Hom(Ω1

X\Y ,O(X \ Y )) coincides

with Hom(Ω1
X ,O(X)) for any closed subset Y ⊂ X of codimension at least 2 (see

[Ha80, Proposition 1.6]). Since X is normal, the quotient X/H is normal too. This
implies that Der(O(X/H)) = Der(O(X/H \ Z)) for any closed subset Z ⊂ X/H
such that codimX/H(Z) ≥ 2.

Let Z ⊂ X/H be the image of the union of the set of fixed points under the
action of the group H and the set of singular points of X. The map π|X\π−1(Z) :

X \π−1(Z)→ X/H \Z is a finite étale covering with group H. Hence, the pullback
π∗(TX/H\Z) of the tangent bundle TX/H\Z of X/H\Z coincides with TX\π−1(Z) and

then TX/H\Z = πH∗ (TX\π−1(Z)) which consists of H-invariant sections X\π−1(Z)→
TX\π−1(Z). This implies that Der(O(X/H)) = Der(O(X/H\Z)) is naturally isomor-

phic to DerH(O(X \ π−1(Z))) = DerH(O(X)), where DerH(O(X)) ⊂ Der(O(X))
denotes the vector subspace ofH-invariant derivations. This means that each deriva-
tion of O(X/H) lifts to a derivation of O(X) and then by [Vas69, Theorem 2.2],
each locally nilpotent derivation of O(X/H) lifts to a locally nilpotent derivation
of O(X). The claim follows. �

Let us recall that a closed subgroup U of Aut(X) is called a 1-dimensional
unipotent subgroup if U ∼= C+.

Proposition 4. The homomorphism φd : Autµd(An) → Aut(Ad,n) is surjective
with kernel µd. Moreover, every 1-dimensional unipotent subgroup of Aut(Ad,n) is
the image of some 1-dimensional unipotent subgroup of Autµd(An).
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Proof. The surjectivity of φd follows from Proposition 3. The last claim of the
statement follows from Lemma 1 (c). What remains is to compute the kernel of φd.

It is clear that

Autµd(An) = {f = (f1, ..., fn) ∈ Aut(An)|fi ∈
∞⊕

k=0

C[x1, ..., xn]kd+1, i = 1, ..., n}.

Now let f = (f1, ..., fn) ∈ Autµd(An) be such that the map f ′ induced by f on
An/µd is the identity. This means that f ′ acts trivially on O(An/µd) = C ⊕⊕

k≥1 C[x1, ..., xn]kd. Hence, f ′(xdi ) = xdi for any i which implies that f = (ξ1x1, ...,

ξnxn), where ξdi = 1 for i = 1, ..., n. In particular, f ′(xd−1
i xj) = xd−1

i xj which im-

plies that ξd−1
i ξj = 1 for any i, j. Because ξd−1

i ξi = 1 we conclude that ξi = ξj . The
claim follows. �

4. Root subgroups

Let G be an ind-group, and let T ⊂ G be a closed torus.

Definition 3. A closed subgroup U ⊂ G isomorphic to C+ and normalized by T
is called a root subgroup with respect to T . The character of T on LieU ∼= C i.e.
the algebraic action of T on LieU is called the weight of U .

Let X be an affine variety and consider a nontrivial algebraic action of C+ on
X, given by λ : C+ → Aut(X). If f ∈ O(X) is C+-invariant, then the modification
f · λ of λ is defined in the following way:

(f · λ)(s)x := λ(f(x)s)x

for s ∈ C and x ∈ X. It is easy to see that this is again a C+-action. In fact, the
corresponding locally nilpotent derivation to f · λ is fδλ, where δλ is the locally
nilpotent derivation which correspond to λ. It is clear that if X is irreducible and
f 6= 0, then f · λ and λ have the same invariants. If U ⊂ Aut(X) is a closed
subgroup isomorphic to C+ and if f ∈ O(X)U is a U -invariant, then in a similar
way we define the modification f ·U of U . Choose an isomorphism λ : C+ → U and
set f · U := {(f · λ)(s)|s ∈ C+}. Note that Lie(f · U) = f LieU ⊂ Vec(X).

If a torus T acts linearly and rationally on a vector space V , then we call V
multiplicity-free if the weight spaces Vα are all of dimension ≤ 1.

Lemma 2 ([Kr15]). Let X be an irreducible affine variety and let T ⊂ Aut(X) be a
torus. Assume that there exists a root subgroup U ⊂ Aut(X) with respect to T such
that the T -module O(X)U is multiplicity-free. Then dimT ≤ dimX ≤ dimT + 1.

5. A special subgroup of Aut(X)

For any affine variety X consider the normal subgroup U(X) of Aut(X) gen-
erated by closed one-dimensional unipotent subgroups. The group U(X) was in-
troduced and studied in [AFK13], where the authors called it the group of special
automorphisms of X. After [Kr15] we introduce the following notion of an algebraic
homomorphism between these groups.

Definition 4. A homomorphism φ : U(X)→ U(Y ) is algebraic if for any subgroup
U ⊂ U(X) such that U ⊂ Aut(X) is closed, U ∼= C+, the image φ(U) ⊂ Aut(Y )
is closed and φ|U : U → φ(U) is a homomorphism of algebraic groups. We say
that U(X) and U(Y ) are algebraically isomorphic, U(X) ∼= U(Y ), if there exists a
bijective homomorphism φ : U(X)→ U(Y ) such that φ and φ−1 are both algebraic.
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A subgroup G ⊂ U(X) is called algebraic if G ⊂ Aut(X) is the closed algebraic
subgroup. The next lemma can be found in [Kr15, Lemma 4.2].

Lemma 3. Let φ : U(X) → U(Y ) be an algebraic homomorphism. Then, for any
algebraic subgroup G ⊂ U(X) generated by one-dimensional unipotent subgroups of
Aut(X), the image φ(G) is an algebraic subgroup of U(Y ) and φ|G : G → φ(G) is
a homomorphism of algebraic groups.

Lemma 4. Let X be an irreducible affine variety, and let η : X̃ → X be its nor-
malization. Then every automorphism of X lifts uniquely to an automorphism of
X̃ and the induced map η̃ : U(X) ↪→ U(X̃) is an algebraic homomorphism.

Proof. Let C(X) be the field of rational functions on X. Then any automorphism
φ of the ring of regular functions O(X) uniquely extends to an automorphism

φ
′

of C(X). We claim that O(X̃) is invariant under φ
′
, which would prove the

first part of the lemma. Indeed, by definition f belongs to O(X̃) if there is a
monic polynomial F = tn + c1t

n−1 + ...+ cn ∈ O(X)[t] such that F (f) = 0. Then
φ(F (f)) = G(φ(f)) = 0 for some monic G ∈ O(X)[t], which proves the claim.

To prove the second part of the lemma, we note that any action of an algebraic
group G on X lifts uniquely to a G-action on X̃. This follows from the fact that
G×X̃ is normal, the universal property of normalization and the following diagram:

G× X̃ −−−−→ X̃
yidG×η

yη

G×X −−−−→ X

Therefore, each regular C+-action on X lifts uniquely to a regular C+-action on X̃,
which proves the claim. �
Proposition 5. Let n ≥ 3 and let X be an n-dimensional irreducible affine variety

endowed with a non-trivial SLn-action. Then O(X) = C⊕∑l
i=1

∑∞
k=ki

C[x1, ..., xn]kdi
for some l, ki, di ∈ N. The same holds when n = 2 and the normalization of X is
Ad,2 for some d ∈ N.

Proof. First, let n ≥ 3. If X is normal, then by Proposition 1, X ∼= Ad,n for some
d ∈ N. It is clear that O(Ad,n) =

⊕∞
k=0 C[x1, ..., xn]kd is a direct sum of irreducible

pairwise non-isomorphic SLn-modules C[x1, ..., xn]kd.
Now, consider any n-dimensional irreducible affine variety X endowed with a

non-trivial SLn-action and a normalization morphism η : Ad,n → X. Since any SLn-
action on O(X) lifts to an SLn-action on O(Ad,n), it follows that O(X) is a SLn-
submodule of O(Ad,n) and therefore O(X) =

⊕
k∈Ω C[x1, ..., xn]kd, where Ω is a

submonoid of N under addition. Since O(X) is finitely generated, Ω ⊂ N is a finitely
generated submonoid i.e. there exist k1, ..., kl ∈ N such that Ω = k1N+ ....klN. The
claim follows. �

6. 2-dimensional case

The next result can be found in [Pop73], §3 (see also [Kr84], §4).

Lemma 5. Let X be an affine normal irreducible variety of dimension two endowed
with a non-trivial SL2-action. Then X is SL2-isomorphic to one of the following
varieties:
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(a) Ad,2 for some d ∈ N,
(b) SL2 /T , where T is the standard subtorus of SL2,
(c) SL2 /N(T ), where N(T ) is the normalizer of T .

The SL2-variety Ad,2 is the union of a fixed point and the orbit (C2 \ {0})/µd ∼=
SL2 /Ud, where µd acts by scalar multiplication on C2\{0} and Ud = {

[
ξ t
0 ξ−1

]
|t ∈

C, ξ ∈ C∗, ξd = 1}. Moreover, any closed subgroup of SL2 of codimension ≤ 2 is

either T , N(T ), Ud for some d ≥ 1 or B = {
[
a t
0 a−1

]
|t ∈ C, a ∈ C∗} (see [We52]).

The next result can be found in [Kr84, III.2.5, Folgerung 3].

Proposition 6. If a reductive group G acts on an affine variety X and if the
stabilizer of a point x ∈ X contains a maximal torus, then the orbit Gx is closed.

Proposition 7. Let X be an SL2-variety and let O = SL2 x be the orbit of x.
Assume that dimO ≤ 2. Then we are in one of the following cases:

(a) x is a fixed point;
(b) the orbit O is closed and SL2-isomorphic to SL2 /T or SL2 /N(T );
(c) O = O ∪ {x0}, where O is the closure of the orbit O and x0 is a fixed point.

Moreover, either O ' A2 or x0 is an isolated singular point.

Proof. If the stabilizer of x contains a maximal torus then we are in case (a) or
(b) by Proposition 6. Otherwise, from the classification of closed subgroups of SL2

it follows that the stabilizer of x coincides with Ud for some d ≥ 1 and O does
not contain orbits of dimension one. Hence, O = O ∪ {x0}. It is clear that if O is
singular, then x0 is an isolated singular point. If O is smooth, then from Lemma 5
it follows that O is isomorphic to A2. �

Note that SL2 /T ∼= P1×P1\∆, where ∆ is the diagonal, and SL2 /N(T ) ∼= P2\C,
where C is a smooth conic (see [Pop73, Lemma 2]).

There is the following well-known result.

Lemma 6. Let X be a variety and let G ⊂ Aut(X) be an algebraic subgroup.

Assume that X = Gx for x ∈ X. Then AutG(X) ∼= NG(Gx)/Gx.

In fact, the right-multiplications on G/H with elements from NG(H)/H are
the automorphisms of G/H which commute with the left-multiplications with all
elements from G.

Lemma 7. Consider the natural SL2-action on X = SL2 /T, SL2 /N or Ad,2, and
denote by S ⊂ Aut(X) the image of SL2.

(a) If X = SL2 /T , then S ∼= PSL2 and AutS(X) = {τ, id}. Moreover, τ acts
freely on X, and X/τ ∼= SL2 /N(T ).

(b) If X = SL2 /N(T ), then S ∼= PSL2 and AutS(X) = id.
(c) If X = Ad,2, then S ∼= SL2 if d is odd and S ∼= PSL2 if d is even. Moreover,

AutS(X) ∼= C∗ is given by the image of C∗ acting by scalar multiplication on A2. In
particular, the groups Aut(SL2 /T ) and Aut(SL2 /N(T )) are not isomorphic, and
also not isomorphic to Aut(Ad,2) for any d ≥ 1.

Proof. Since the natural action of SL2 on SL2 /T or SL2 /N(T ) is transitive, (a) and
(b) are immediate consequences of Lemma 6. For (c) we remark that X contains
the orbit O ∼= SL2 /Ud. For d = 1, i.e. for X = A2, the claim is well-known. If d > 1,
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then Aut(X) ∼= Aut(O), since the complement of O in X is a singular point. Now
the claim follows from Lemma 6. �

The variety SL2 /T is isomorphic to the following so-called Danielewski surface,
i.e. the smooth 2-dimensional affine quadric V (xz − y2 + y) ⊂ A3 (see [DP09]) and

the quotient map π : SL2 → SL2 /T is given by

[
a b
c d

]
→ (ab, ad, cd). It is not

difficult to see that X := V (xz + y2 − 1) ∼= V (xz − y2 + y) ⊂ A3.

By Lemma 7, there is an automorphism τ ∈ AutS(X) which acts freely on X and
the quotient Y := X/τ is isomorphic to SL2 /N(T ), i.e. π : X → Y is a principal
Z/2-bundle. In particular, O(Y ) = O(X)τ . An automorphism φ of X descends to
an automorphism on Y if and only if φ sends τ -orbits to τ -orbits. In fact, such
an automorphism sends τ -invariant functions of O(X) to τ -invariant functions of
O(X). Since τ has order 2, this condition for φ is equivalent to the condition that φ
commutes with τ . We first note that Autτ (X) is a closed subgroup of Aut(X) and
then the canonical map p : Autτ (X)→ Aut(Y ) is a homomorphism of ind-groups.
In fact, kernel of p equals 〈τ〉.

The following proposition follows from Lemma 1(c).

Proposition 8. Every C+-action on Y lifts to a C+-action on X. In particular,
the image p(Autτ (X)) contains U(Y ) and p−1(U(Y )) ⊂ U(X)

Corollary 1. For every algebraic subgroup G ⊂ U(Y ) the inverse image π−1(G) ⊂
Autτ (X) is algebraic. If G is generated by unipotent elements, then π−1(G) =
π−1(G)0 × 〈τ〉.

By [Lam05, Theorem 6], Aut(X) is the amalgamated product of the orthogonal
group O(3,C) = SO(3,C) × 〈τ〉 and JT o 〈τ〉 along their intersection CT , where
τ = (−x,−y,−z), JT is the group of automorphisms of the form

(x, y, z) 7→ (αx+ 2αyP (z)− αzP 2(z), (y − zP (z)),
1

α
z); α ∈ C∗, P ∈ C[z].

Hence, Aut(X) is generated by U(X) and 〈τ〉. Since U(X) is the normal subgroup
of Aut(X), it follows that Aut(X) = U(X) o 〈τ〉. By [Neu48, Corollary 8.11],
U(X) is the amalgamated product of SO(3,C) and JT . Note that the subgroup
U(X) = Aut0(X) ⊂ Aut(X) is closed (see [Kr15, Lemma 6.3]), where Aut0(X) is
the neutral component of Aut(X). Hence, U(X) is an ind-group. By the following
computation

(tx, y, t−1z) ◦ (x+ 2yP (z)− zP 2(z), (y − zP (z)), z) ◦ (t−1x, y, tz) =

= (x+ 2ytP (tz)− zt2P 2(tz), (y − ztP (tz)), z),

it is easy to see that Ui = {(x+ 2yPi(z)− zP 2
i (z), (y− zPi(z)), z)|Pi(z) = zi} is the

root subgroup with weight i + 1 with respect to T ′′ = {(tx, y, t−1z)|t ∈ C∗} ∼= C∗
for any i ∈ N ∪ {0}. The fact that there is no other root subgroups with respect to
T ′′ follows from amalgamated product structure.

Summarizing everything that is said above, we have the following result.

Proposition 9. For X = SL2 /T we have the following properties.
(a) All closed subgroups S ⊂ Aut(X) isomorphic to PSL2 are conjugate.
(b) The root subgroups with respect to a maximal torus T ′′ of some S ∼= PSL2

are multiplicity-free with weights 1, 2, 3, ...
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It is not difficult to see that Autτ (X) is the amalgamated product of SO(3,C)×
〈τ〉 and Jτ × 〈τ〉 along their intersection, where

Jτ = {(x, y, z) 7→ (αx+2αyP (z)−αzP 2(z), (y−zP (z)),
1

α
z); α ∈ C∗, P ∈

∞⊕

l=0

Cz2l}.

By [Neu48, Corollary 8.11], Autτ (X) is the amalgamated product of SO(3,C)×〈τ〉
and Jτ × 〈τ〉 along their intersection.

Recall that map p : Autτ (X) � Aut(Y ) is the surjective homomorphism with
kernel 〈τ〉. Hence, Aut(Y ) = Autτ (X)/〈τ〉. By [Co63, Theorem 1], Aut(Y ) is
the amalgamated product of SO(3,C) and Jτ along their intersection. Therefore,
Aut(Y ) = U(Y ).

Summarizing everything that is said above and Proposition 9, we have the fol-
lowing result.

Corollary 2. The root subgroups with respect to a maximal torus T ′′ of any S ∼=
PSL2 are multiplicity-free with weights 1,3,5,.... In particular, U(SL2 /N(T )) 6∼=
U(SL2 /T ).

Recall that by Corollary 4, there is a homomorphism φd : Autµd(An)→ Aut(Ad,n)
of ind-groups. Consider now the torus Tn = {(t1, ..., tn)|ti ∈ C∗} ⊂ Aut(An) and
the torus T ′n = {(t1, ..., tn)|ti ∈ C∗, t1 · ... · tn = 1} ⊂ U(An) of dimension n − 1.
Then Td := φd(T

′
n) is a maximal subtorus of U(Ad,n) ⊂ Aut(Ad,n).

The following lemma is easy and follows from Lemma 12.

Lemma 8. Let d be even. Then weights of root subgroups of Aut(Ad,2) with respect

to Td are {kd+2
2 | k ∈ N ∪ {0}}.

By Jung - Van der Kulk theorem (see [Ju42] and [Kul53]) Aut(A2) = Aff2 ∗CJ ,
where Aff2 is the group of affine transformations of A2, J = {(ax+b, cy+f(x))|a, c ∈
C∗, b ∈ C, f(y) ∈ C[x]} and C = Aff2 ∩J . Subgroup Autµk(A2) ⊂ Aut(A2) also has
a structure of amalgamated product by [Neu48, Corollary 8.11], namely, Autµk(A2)
is the amalgamated product of GL2 and Jk = {(ax + b, cy + f(x))|a, c ∈ C∗, b ∈
C, f(y) ∈⊕l Cxlk+1} along their intersection (see also [AZ13, Theorem 4.2]). From
Proposition 4, it follows that Aut(Ak,2) ∼= Autµk(A2)/µk and by [Co63, Theorem
1], Autµk(A2)/µk is the amalgamated product of GL2 /µk and Jk/µk along their
intersection Ck. Hence, it is easy to see that U(A2/µ2k) is the amalgamated product
of PSL2 and J2k = {(ax + b, cy + f(x))|a, c ∈ C∗, b ∈ C, f(y) ∈⊕l Cxlk+1} along
their intersection.

Note that O(Ad,n) ⊂ C[x1, ..., xn] for any d ≥ 1. Hence, we can define the
Jacobian matrix of f = (f1, ..., fn) ∈ Aut(Ad,n) in the ususal way i.e. Jac(f) =

( ∂fi∂xj
)i,j and then (f) := det Jac(f). It is also well-known that U(A2) = {f ∈

Aut(C2)| (f) ∈ C∗}. It follows that U(Ad,2) = {f ∈ Aut(Ad,2)| (f) ∈ C∗}.
Therefore, U(Ad,2) ⊂ Aut(Ad,2) is the closed subgroup.

The following result was pointed to us by Hanspeter Kraft.

Proposition 10. Let Z be an irreducible affine normal variety of dimension 2.
(a) Assume that there is a bijective algebraic homomorphism U(SL2 /T )→ U(Z).

Then Z ∼= SL2 /T or A2,2.
(b) Assume that there is a bijective algebraic homomorphism U(SL2 /N(T )) →

U(Z). Then Z ∼= SL2 /N(T ) or A4,2.
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Proof. Choose an SL2-action on Z such that the the root subgroups with respect
to the image T ⊂ U(Z) of the diagonal torus T ⊂ SL2 are multiplicity-free with
weights 1, 2, 3, .... The existence of such an action is given by Proposition 9(b) for
SL2 /T , and then follows for SL2 /N(T ) by Corollary 2. By Lemma 5, Z is SL2-
isomorphic to SL2 /T , to SL2 /N(T ), or to Ad,2 for some d ∈ N.

To prove the claim, we first note that U(SL2 /T ) 6∼= U(SL2 /N(T )) by Corollary
2. Let X ∼= SL2 /T or to SL2 /N(T ). Then the isomorphism U(X) ∼= U(C2/µd)
implies that d is even by Lemma 7. By Lemma 13, weights of root subgroups of
U(X) and U(Ad,2) have to be equal and then Lemma 8 implies that U(SL2 /T )
can only be isomorphic to U(A2,2), and U(SL2 /N(T )) can only be isomorphic to
U(A4,2) by Corollary 2.

To show that U(A2,2) and U(SL2 /T ) are algebraically isomorphic, we first note
that the first factors from the amalgamated product (described above) of U(A2,2)
and U(SL2 /T ) are isomorphic to PSL2. To show that J2 and JT are algebraically
isomorphic, it is enough to say that they have the same weights with respect to the
standart subtori. It remains to remark that CT ∼= C2. Analogously, U(A4,2) and
U(SL2 /N(T )) are algebraically isomorphic too. �

7. Higher-dimensional case

The next result can be found in [Lie11, Theorem 1]. Recall that by T ′n we denote
the standard maximal subtorus of SAut(An) = {f = (f1, ..., fn) ∈ Aut(An)| jac(f) :=

det[ ∂fi∂xj
]i,j = 1}.

Lemma 9. Let U ⊂ SAut(An) be a one-dimensional unipotent subgroup. Then
U is a root subgroup with respect to T ′n if and only if U = Uλ = {(x1, ..., xi +

cmi, ..., xn)|c ∈ C}, where mi = xλ1
1 ...x

λi−1

i−1 x
λi+1

i+1 ...x
λn
n . The character ξλ corre-

sponding to the root subgroup U is the following: ξλ : T ′n → C∗, t = (t1, ..., tn) 7→
tit
−λ1
1 ...t̂i...t

−λn
n .

Remark 1. The last lemma can also be expressed in the following way (see
[KS13, Remark 2]): there is a bijective correspondence between the T ′n-stable one-
dimensional unipotent subgroups U ⊂ Aut(An) and the characters of T ′n of the
form λ =

∑
j λjεj where one λi equals 1 and the others are ≤ 0. We will denote

this set of characters by Xu(T ′n):

Xu(T ′n) := {λ =
∑

λjεj |such that λi = 1 and λj ≤ 0 for j 6= i}.

If λ ∈ Xu(T ′n), then Uλ denotes the corresponding one-dimensional unipotent sub-
group normalized by T ′n.

Lemma 10. Consider the standard action of SLn on Ad,l and denote by Sn,d ⊂
Aut(Ad,n) the image of SLn. Then Sn,d ∼= SLn /µ(n,d), where (n, d) denotes the
greatest common divisor of n and d. Moreover, Sn,d ⊂ U(Ad,n).

Proof. By Proposition 4, there is a surjective homomorphism φd : Autµd(An) →
Aut(Ad,n) of ind-groups with kerφ = µd. Hence, Aut(Ad,n) ∼= Autµd(An)/µd which
shows that Sn,d ∼= SLn /µd. The second claim is clear. �

Corollary 3. If U(Ad,n) and U(Al,n) are algebraically isomorphic, then (d, n) =
(l, n).
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Recall that by Proposition 4 there is a homomorphism φd : Autµd(An) →
Aut(Ad,n) of ind-groups and we denote by Td the subtorus φd(T

′
n) ⊂ U(Ad,n).

Map φd induces the map φ̃d : Uµd(An) → U(Ad,n) which has the kernel µ(n,d),

where Uµd(An) ⊂ Autµd(An) is a subgroup generated by C+-actions.
In [BB67], it is proved that any faithful action of an (n − 1)-dimensional torus

on An is linear. This result is used in order to prove the following lemma.

Lemma 11. Let T be an algebraic subtorus of U(Ad,n) of dimension (n−1). Then

there exists a bijective algebraic homomorphism F : U(Ad,n)
∼→ U(Ad,n) such that

F (T ) = Td.

Proof. Torus (φ−1
d (T ))0 is an algebraic subgroup of U(An) isomorphic to (C∗)n−1.

By [BB67, Theorem 1], the torus φ−1
d (T )◦ is conjugate to some subtorus T̃ of Tn in

Aut(An). Since U(An) is the normal subgroup of Aut(An), T̃ ⊂ T ′n = Tn ∩ U(An).
Therefore, (φ−1

d (T ))0 is conjugate to T ′n which proves the claim. �

Lemma 12. Let U ⊂ Aut(Ad,n) be a root subgroup with respect to Td which has

a character χ. Then U lifts to a root subgroup Ũ := (φ−1
d (U))0 ⊂ Autµd

(An) with

respect to T ′n = (φ−1
d (Td))

0 with character χ̃ := ψ∗(χ) such that the following
diagram

1 −−−−→ µ(n,d) −−−−→ T ′n
ψ−−−−→ Td −−−−→ 1

yχ̃
yχ

C∗ =−−−−→ C∗
commute, where ψ = φd|T ′n and ψ∗(χ) is a pull-back of χ.

Proof. From Proposition 3 it follows that any root subgroup U of Aut(Ad,n) with

respect to Td lifts to a unipotent subgroup Ũ = (φ−1
d (U))0 of Autµd(An). Moreover,

Ũ is normalized by (φ−1
d (Td))

◦ = T ′n. Now, let ũ ∈ Ũ and u = φd(ũ) ∈ U . Then

φd(t
−1 ◦ ũ(s) ◦ t) = φd(ũ(tks)) = ũ(ψ(tk)s) for some k ∈ N, which proves the

claim. �

Proposition 11. Let X = Ad,n, SL2 /T or SL2 /N(T ) and Y be an irreducible
affine variety. Let also assume that there is a bijective algebraic homomorphism
U(X)

∼−→ U(Y ). Then dimY ≤ dimX. Moreover, if additionally Y is normal, then
(a) if X ∼= SL2 /T , then Y ∼= A2,2 or Y ∼= SL2 /T ,
(b) if X ∼= A2,2, then Y ∼= A2,2 or Y ∼= SL2 /T ,
(c) if X ∼= SL2 /N(T ), then Y ∼= A4,2 or Y ∼= SL2 /N(T ),
(d) if X ∼= A4,2, then Y ∼= A4,2 or Y ∼= SL2 /N(T ),
(e) otherwise, Y ∼= Ad,n.

Proof. Fix an algebraic isomorphism ψ : U(X)
∼→ U(Y ) and denote by T ′ the image

of Td if X = Ad,2 or the image of a maximal subtorus T of U(X) if X = SL2 /T or
SL2 /N(T ). By Lemma 12, Proposition 9 and Corollary 2, all root subgroups U ⊂
U(Y ) with respect to T ′ have different weights. In particular, the root subgroups
O(Y )U ·U ⊂ U(Y ) have different weights, which implies that O(Y )U is multiplicity-
free, because the map O(Y )U → O(Y )U · U is injective. Hence, by Lemma 2, we
have that dimY ≤ dimT ′ + 1 = n, which proves the first part of the lemma.

Now (a), (b), (c) and (d) follow from Proposition 10.
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To prove (e), we note that SLn /µ(n,d) belongs to U(Ad,n), which implies that
SLn acts non-trivially on Y and thus, by Proposition 1, Y ∼= Al,n for some l ∈ N.

Hence, ψ : U(Ad,n)
∼→ U(Al,n). By Lemma 11 there exist an algebraic isomorphism

F : U(Al,n)
∼→ U(Al,n) such that F (ψ(Td)) = Tl. Therefore, we can assume that

ψ(Td) = Tl. Groups U(Al,n) and U(Ad,n) can be isomorphic only if (n, d) = (n, l)
by Corollary 3. Then, by Lemma 13, weights of root subgroups of U(Ad,n) and
U(Al,n) with respect to tori Td and Tl respectively have to coincide and the claim
follows from Lemma 12. �
Proof of Theorem 1. It is clear from the definition that an isomorphism of ind-
groups Aut(X)

∼−→ Aut(Ad,n) induces an algebraic isomorphism U(X)
∼−→ U(Ad,n).

Now the claim follows from Proposition 11 and Lemma 7. �

Let Z be an irreducible affine SLn-variety of dimension n ≥ 2 and ψ : U(Z)
∼→

U(Ad,n) be an algebraic isomorphism. Let T be an (n − 1)-dimensional algebraic
subtorus of U(Z). Then, by Lemma 11, we can assume that ψ(T ) = Td.

Lemma 13. Let ψ : U(Z)
∼→ U(Ad,n) be as above. Then root subgroups U and

ψ(U) have the same weights with respect to T and Td respectively.

Proof. Let U be a root subgroup of U(Z) with respect to T and LieU = Cν, where ν
is a generator. Then ψ(U) is the root subgroup of U(Ad,n) with respect to Td. The
algebraic isomorphism ψ induces an isomorphism dψue : LieU → Lieψ(U). Note
that action of T on U induces the action of T on LieU . Then dψue (t ◦ ν ◦ t−1) =
dψue (χ(t)ν) = χ(ψ(t))ψ(ν), where χ : T → C∗ is a character. �
Theorem 5. Let X = Ad,n, SL2 /T or SL2 /N(T ) and Y be an irreducible affine
variety. Let also there is a bijective algebraic homomorphism U(Y )→ U(X). Then

(a) if X ∼= A2,2, then Y ∼= SL2 /T or Y ∼= As2,2 for some s ∈ N,
(b) if X ∼= SL2 /T , then Y ∼= SL2 /T or Y ∼= As2,2 for some s ∈ N,
(c) if X ∼= A4,2, then Y ∼= SL2 /N(T ) or Y ∼= As4,2 for some s ∈ N,
(d) if n = 2 and X ∼= SL2 /N(T ), then Y ∼= SL2 /N(T ) or Y ∼= As4,2 for some

s ∈ N,
(e) otherwise, Y ∼= Asd,n for some s ≥ 1.

Proof. Let ψ : U(X)→ U(Y ) be an algebraic isomorphism. Proposition 11 implies
that dimY ≤ dimX. Since SLn acts regularly and non-trivially on X, SLn also
acts non-trivially and regularly on Y .

First, let X be isomorphic to Ad,n. Then by Lemma 5 and by Proposition 1,

normalization of Y , which we denote by Ỹ , is isomorphic to SL2 /T , SL2 /N(T ) or
Al,n for some l ≥ 1.

First, assume that Ỹ ∼= Al,n. Hence, Proposition 5 implies that O(Y ) = C ⊕∑r
i=1

∑∞
k=ki

C[x1, ..., xn]kli for some r, ki, li ∈ N, i ∈ {1, ..., l}. Let η : Al,n → Y be
the normalization morphism which by Lemma 4 induces the algebraic homomor-
phism η̃ : U(Y ) ↪→ U(Al,n). Note that SLn /µ(n,d) acts faithfully on X. Then
SLn /µ(n,d) also acts faithfully on Y and therefore on Al,n. This implies that
(n, d) = (n, l). By Lemma 11, we can assume without loss of generality that
ψ−1(η̃−1(Tl)) = Td.

It is clear that for any si ≥ ki, the group U = {(x1 + cxsidi+1
2 , x2, ...., xn)|c ∈

C} ⊂ Autµl(An) induces a root subgroup Ū of U(Y ) with respect to η̃−1(Tl), and
then U acts on O(Y ). Since (n, d) = (n, l), φd|T ′n and φl|T ′n have the same kernels,
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and because Ū and ψ−1(Ū) have the same weights with respect to η̃−1(Tl) and Td
respectively, by Lemma 12, U should also induce a C+-action on Ad,n. Hence, U
acts on O(Ad,n) and then d + sidi ∈ Nd. Since si is any natural number greater
than or equal to ki, d|di for each i. Therefore, Nd1 + ...+ Ndk ⊂ Nd.

Analogously as above, for any k ≥ 1, subgroup U ′ = {(x1 +cxkd+1
2 , x2, ..., xn)|c ∈

C} ⊂ Autµd(An) induces a root subgroup of U(Ad,n) with respect Td. Then U ′

acts on O(Y ), which implies that diki + kd ∈ (N≥k1d1 + ... + N≥kldl) for any
i, where N≥k := {m ∈ N|m ≥ k}. This shows that N≥k1d1 + ... + N≥kldl =
N≥mini{kidi|i=1,...,l}d.

Now assume that Ỹ is isomorphic to SL2 /T or to SL2 /N(T ), then by Proposition

7, Y = Ỹ . Then (e) follows from Proposition 10.

Let now X ∼= SL2 /T . Then by Lemma 5, Ỹ can only be isomorphic to SL2 /T ,

SL2 /N(T ) or A2,2. By Proposition 10, Ỹ is isomorphic to SL2 /T or to A2,2. If

Ỹ ∼= SL2 /T , from Proposition 7, it follows that Y = Ỹ . Hence, (b) follows from
the first part of the proof. Analogously follows (d). �

Proof of Theorem 2. The isomorphism Aut(X)
∼−→ Aut(Ad,n) induces an algebraic

isomorphism U(X)→ U(Ad,n). Note that X admits a torus action of dimension n.
From Theorem 5 it follows that X can only be isomorphic to Asd,n. Since normaliza-

tion of Asd,n is equal to Ad,n, it follows from [FK17] that there is a closed embedding

Aut(Asd,n) ↪→ Aut(Ad,n) of ind-groups and the proof follows from Lemma 4. �

Proof of Theorem 3. Isomorphism Aut(X)
∼−→ Aut(SL2 /T ) induces an algebraic

isomorphism U(X) → U(SL2 /T ). Then the claim follows from Theorem 5 and
Lemma 7. �

Proof of Theorem 4. Follows from Theorem 5. �
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GROUPS OF AUTOMORPHISMS OF DANIELEWSKI SURFACES

MATTHIAS LEUENBERGER AND ANDRIY REGETA

Abstract. We show that subgroups U(SL2 /T ) ⊂ Aut(SL2 /T ) and respec-

tively U(A2/µ2) ⊂ Aut(A2/µ2) generated by C+-actions are not isomorphic
as ind-groups although U(SL2 /T ) and U(A2/µ2) are algebraically isomorphic

i.e. there is an isomorphism φ : U(SL2 /T ) → U(A2/µ2) of abstract groups

and the restriction of φ to any one-dimensional connected unipotent subgroup
is an isomorphism of algebraic groups. We also prove that the Lie subalgebra

of the Lie algebra of vector fields Vec(Dp) generated by locally nilpotent vector

fields on Dp is simple.

1. Introduction and Main Results

Our base field is the field of complex numbers C. For an affine variety X the
automorphism group Aut(X) has the structure of an ind-group. We will shortly
recall the basic definitions in the following section 2. The classical and most studied
example is Aut(An), the group of automorphism of the affine n-space An. Other
examples which have gotten a lot of attention in recent years are Danielewski sur-
faces Dp = {(x, y, z) ∈ A3|xy = p(z)}, where deg p ≥ 2 and p has no multiple roots.
Note that SL2 /T ∼= Dp = V (xz − y2 + y) ⊂ A3 (see [DP09]).

Let X be an affine variety. By U(X) we define the subgroup of Aut(X) gen-
erated by C+-actions (see [AFK13] for details). Let us denote by µ2 the cyclic
group of order 2, which acts on A2 in the following way: ξ · (x, y) = (ξx, ξy), where
ξ ∈ µ2. In [Reg17, Proposition 10] it is shown that there is an abstract isomorphism
φ : U(SL2 /T )→ U(A2/µ2) such that the restriction of φ to any algebraic subgroup
U ∼= C+ is an isomorphism of algebraic groups. Note that U(A2/µ2) is a closed sub-
group of Aut(A2/µ2) (see [Reg17, Proposition 10]) and U(SL2 /T ) = Aut0(SL2 /T )
is a closed subgroup of Aut(SL2 /T ) (see Proposition 4). Hence, U(SL2 /T ) and
U(A2/µ2) are ind-groups.

Theorem 1. The ind-groups U(SL2 /T ) and U(A2/µ2) are not isomorphic.

In order to prove the above result we show that Lie subalgebras LieU(SL2 /T )
and LieU(A2/µ2) are not isomorphic.

Let Vec(Dp) be the Lie algebra of vector fields on Dp. Consider the Lie subalge-

bra Liealg U(Dp) ⊂ Vec(Dp) generated by all locally-nilpotent vector fields on Dp.
We prove that such a Lie algebra is simple.

Theorem 2. Let Dp be a Danielewski surface, where deg p ≥ 2. Then Liealg U(Dp)
is a simple Lie algebra.

The authors are supported by Swiss National Science Foundation (Schweizerischer National-

fonds).
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2. Preliminaries

The notion of an ind-group goes back to Shafarevich who called these objects
infinite dimensional groups, see [Sh66], [Sh81]. We refer to [Kum02] and [Kr15] for
basic notations in this context.

Definition 1. By an ind-variety over C we mean a set V together with an ascending
filtration V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ V such that the following holds:

(1) V =
⋃
k∈N Vk;

(2) each Vk has the structure of an algebraic variety;
(3) for all k ∈ N the subset Vk ⊂ Vk+1 is closed in the Zariski-topology.

A morphism between ind-varieties V =
⋃
k Vk and W =

⋃
mWm is a map

φ : V → W such that for every k there is an m ∈ N such that φ(Vk) ⊂ Wm

and that the induced map Vk → Wm is a morphism of varieties. Isomorphisms of
ind-varieties are defined in the usual way.

Two filtrations V =
⋃
k∈N Vk and V =

⋃
k∈N V

′
k are called equivalent if for

any k there is an m such that Vk ⊂ V ′m is a closed subvariety as well as V ′k ⊂
Vm. Equivalently, the identity map id : V =

⋃
k∈N Vk → V ′ =

⋃
k∈N V

′
k is an

isomorphism of ind-varieties.
An ind-variety V has a natural topology where S ⊂ V is open, resp. closed, if

Sk := S ∩Vk ⊂ Vk is open, resp. closed, for all k. Obviously, a locally closed subset
S ⊂ V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all Vk are affine. Throughout this paper we consider
only affine ind-varieties and for simplicity we call them just ind-varieties.

For any ind-variety V =
⋃
k∈N Vk we can define the tangent space in x ∈ V in

the obvious way. We have x ∈ Vk for k ≥ k0, and TxVk ⊂ TxVk+1 for k ≥ k0, and
then define

TxV := limk≥k0 TxVk,

which is a vector space of countable dimension. A morphism φ : V → W induces
linear maps dφx : TxV → Tφ(x)W for every x ∈ X. Clearly, for a k-vector space V
of countable dimension and a for any v ∈ V we have TvV = V in a canonical way.

The product of two ind-varieties is defined in the obvious way. This allows to
give the following definition.

Definition 2. An ind-variety G is said to be an ind-group if the underlying set G
is a group such that the map G×G→ G, taking (g, h) 7→ gh−1, is a morphism.

Note that any closed subgroup H of G, i.e. H is a subgroup of G and is a closed
subset, is again an ind-group under the closed ind-subvariety structure on G. It is
clear that a closed subgroup H of an ind-group G is an algebraic group if and only
if H is an algebraic subset of G.

IfG is an affine ind-group, then TeG has a natural structure of a Lie algebra which
will be denoted by LieG. The structure is obtained by showing that every A ∈ TeG
defines a unique left-invariant vector field δA on G, see [Kum02, Proposition 4.2.2,
p. 114].

Definition 3. An ind-group G =
⋃
kGk is called discrete if Gk is finite for all k.

Clearly, G is discrete if and only if LieG is trivial.

The next result can be found in [St13] (see also [FK17]).
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Proposition 1. Let X be an affine variety. Then Aut(X) has a natural structure
of an affine ind-group.

Since Aut(X) has a structure of an ind-group for any affine variety X, we can
define a Lie algebra of Aut(X). It is not difficult to see that Lie Aut(X) can
be injectively embedded into the Lie algebra Vec(X) of vector fields on X: ψ :
Lie Aut(X) ↪→ Vec(X). In the future, we will always identify Lie Aut(X) with its
image in Vec(X). Note that Lie Aut(X) contains all locally nilpotent vector fields
because each such vector field ν corresponds to a unipotent subgroup U ⊂ Aut(X),
U ∼= C+ and ν ∈ LieU ⊂ Lie Aut(X). If U(X) ⊂ Aut(X) is a closed subgroup,
then similarly, LieU(X) contains all locally nilpotent vector fields.

The next result which we will use in the future was pointed out to us by
Hanspeter Kraft.

Proposition 2. Let φ : G→ H be a homomorphism of ind-groups. Then φ induces
a homomorphism dφe : LieG→ LieH of Lie algebras.

3. Automorphisms of Danielewski surface

Let p ∈ C[t] be a polynomial of degree d ≥ 2 with simple roots. Define the
Danielewski-surface Dp ⊂ A3 to be the zero set of the irreducible polynomial
xy − p(z):

Dp = {(x, y, z) ∈ A3|xy − p(z)} ⊂ A3.

The following is easy (Ċ := C \ {0}):
(a) Dp is smooth,
(b) the two projections πx : Dp → C, (x, y, z) 7→ x and πy : Dp → C, (x, y, z) 7→ y

are both smooth,
(c) (Dp)x = π−1x (Ċ)

∼→ Ċ× C, (x, y, z) 7→ (x, z) and similarly for πy,
(d) π−1x (0) is the disjoint union of d copies of the affine line C.

For the rest of this section we assume deg p > 2 unless stated otherwise. For
every nonzero f ∈ C[t] there is a C+-action αf on Ċ × C given by αf (s)(x, z) :=

(x, z + f(x)), i.e. by translation with f(x) in the fiber of x ∈ Ċ. It is easy to see
that this action extends to an action on Dp if and only if f(0) = 0. We denote the
corresponding actions on Dp by αx,f , respectively αy,f . The explicit form is

αx,f (s)(x, y, z) = (x, p(z + sf(x)), z + sf(x))

and similarly for αy,f . The projection πx : Dp → C is the quotient for all these
actions, and the action on π−1(0) is trivial. Note that the corresponding vector
fields are given by

νx,f := p′(z)
f(x)

x

∂

∂y
+ f(x)

∂

∂z
and νy,f := p′(z)

f(y)

y

∂

∂x
+ f(y)

∂

∂z
.

Lemma 1. The map αx : (tC[t])+ → Aut(Dp), f 7→ αx,f (1), is a closed immersion
of ind-groups.

Proof. The map is obviously a homomorphism of ind-groups. If we denote by
ρ : Aut(Dp)→ O(Dp) the map φ 7→ φ∗(z), then this is a morphism of ind-varieties,
and the composition ρ ◦ αx maps f ∈ tC[t] to f(x) ∈ C[x] ⊂ O(Dp), hence is a
closed immersion. �
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Denote by Ux, Uy ⊂ Aut(Dp) the image of αx and αy. Note that there is also
a faithful C∗-action on Dp given by t(x, y, z) := (tx, t−1y, z) which normalizes Ux
and Uy. Denote by T ⊂ Aut(Dp) the image of C∗. The following result is due to
Makar-Limanov.

Proposition 3. The group Aut(Dp) is generated by Ux, Uy, T and a finite subgroup
F which normalizes 〈Ux, Uy, T 〉.
Proposition 4. Aut(SL2 /T ) = U(SL2 /T ) o µ2, where µ2 denotes a cyclic group
of order 2. In particular, Aut(SL2 /T )0 = U(SL2 /T ) is an ind-group.

Proof. By [DP09], SL2 /T ∼= Dp, where deg p = 2. Note that for any two polynomi-
als p, q ∈ C[z] of degree 2 without multiple roots, we have Dp

∼= Dq. It follows from
[Lam05, Theorem 6] that Aut(Dp) is generated by C+-actions and cyclic subgroup
µ2 of order 2 which permute roots {a, b} of p, i.e Aut(Dp) = 〈U(Dp), µ2〉. Because
U(Dp) is normal subgroup of Aut(Dp), we have Aut(Dp) = U(Dp) o µ2. Then
U(Dp) = {φ ∈ Aut(Dp)|φ(a) = a, φ(b) = b} is the closed subgroup of Aut(Dp). �

We denote by Liealg U(A2/µ2) the Lie subalgebra of Vec(A2/µ2) generated by
all locally nilpotent vector fields on A2/µ2.

Proof of Theorem 1. Assume there is an isomorphism φ : U(SL2 /T ) → U(A2/µ2)
of ind-groups. By Proposition 2 it induces an isomorphism dφe : LieU(SL2 /T )→
LieU(A2/µ2) of Lie algebras, and because φ maps each closed unipotent sub-
group U ∼= C+ to φ(U) ∼= C+, dφe induces an isomorphism of Lie algebras

Liealg U(SL2 /T ) and Liealg U(A2/µ2).

By Theorem 2, Liealg U(SL2 /T ) is simple. On the other hand, we claim that

Liealg U(A2/µ2) is not simple. Indeed, since A2/µ2 has an isolated singular point
s, each vector field, which comes from an algebraic group action, vanishes at this
singular point. In particular, each locally nilpotent vector field vanishes at isolated
singular point. Because Liealg U(A2/µ2) is generated by locally nilpotent vector

fields, each ν ∈ Liealg U(A2/µ2) vanishes at isolated singular point of A2/µ2. Let

I ⊂ Liealg U(A2/µ2) be a Lie subalgebra generated by those vector fields which
vanish at isolated singular point with multiplicity k > 1. It is clear that I 6=
Liealg U(A2/µ2) because x ∂

∂y ∈ (Liealg U(A2/µ2) \ I). Moreover, it is clear that

[ν, µ] ∈ I for any ν ∈ I and µ ∈ Liealg U(A2/µ2) which shows that I is an ideal.
The claim follows. �

4. Module of differentials and vector fields

Since Dp is smooth, the differentials Ω(Dp) and the vector fields Vec(Dp)
∼→

Hom(Ω(Dp),O(Dp)) are locally free O(Dp)-modules, and then, projective. More
precisely, we have the following description.

Proposition 5. (a) The module Ω(Dp) of differentials is projective of rank 2 and
is generated by dx, dy, dz, with the unique relation ydx+ xdy − p′(z)dz = 0.

(b) The module Ω2(Dp) :=
∧2

Ω(Dp) is free of rank one and is generated by

ω :=
1

x
dx ∧ dz =

1

y
dy ∧ dz =

1

p′(z)
dx ∧ dy.

Proof. (a) From above it is clear that Ω(Dp) is the projective module of rank 2 =
dim(Dp). It is easy to see that Ω(Dp) = (O(Dp)dx⊕O(Dp)dy⊕O(Dp)dz)/(ydx+
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xdy − p′(z)dz), where ydx + xdy − p′(z)dz = d(xy − p(z)). In fact, the surface
Dp is covered by the special open sets Dx, Dy, Dp′(z) and Ω(Dp) is free module of
rank two over these open sets, generated by (dx, dz), by (dy, dz), and by (dx, dy),
respectively.

(b) The three expressions are well-defined in the special open sets Dx, Dy, Dp′(z),
respectively, and the relation ydx+xdy−p′(z)dz = 0 implies that they coincide on
the intersections. Thus ω is a nowhere vanishing section of Ω2(Dp) and therefore,
Ω2(Dp) is free of rank 1 (see also [KK10, Section 3] for details). �

Remark 1. In fact, for any normal hypersurface X ⊂ An, Ωn−1(X) :=
∧n−1

Ω(X)
is free of rank one.

Remark 2. Note that there is no δ ∈ Vec(Dp) such that δ : O(Dp) → O(Dp) is
surjective because Ω(Dp) is not free. Note also that ω is unique up to a constant
because O(Dp)

∗ = C∗.

It is well-known that every vector field δ on Dp ⊂ A3 extends to a vector field δ̃
on C3. It follows that δ can be written in the form

δ = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
,

where a, b, c ∈ O(Dp) such that ay+ bx− cp′(z) = 0 in O(Dp). In fact, considering
δ as a O(Dp)-linear map Ω(Dp) → O(Dp), we have a = δ(dx), b = δ(dy) and
c = δ(dz). This presentation of δ is unique.

Remark 3. In fact, the vector fields Vec(Dp) form a module over O(Dp) of rank
2, generated by

νz := x
∂

∂x
− y ∂

∂y
, νx := p′(z)

∂

∂y
+ x

∂

∂z
, νy := p′(z)

∂

∂x
+ y

∂

∂z

with the unique relation xνy − yνx = p′(z)ν0.

The next result is clear.

Proposition 6. The sequence

0→ C→ O(Dp)
d−→ dΩ(Dp)

d−→ dΩ2(Dp)→ 0

is exact.

5. Volume form and divergence.

For any θ ∈ Vec(Dp) we have the contraction

iθ : Ωk+1 → Ωk, iθ(η)(θ1, ..., θk) := η(θ, θ1, ..., θk).

In particular, for η ∈ Ω(Dp), we have iθ(η) = η(θ) ∈ O(Dp), and so iθ(df) = θf .
The vector field θ ∈ Vec(Dp) acts on the differential forms Ω(Dp) by the Lie

derivative Lθ := d ◦ iθ + iθ ◦ d, extending the action on O(Dp). One finds (see for
details [KK10, Section 3])

Lθ(f) = θf, Lθ(df) = d(θf) and Lθ(h·µ) = θh·µ+h·Lθµ for f, h ∈ O(Dp), µ ∈ Ω(Dp).

Using the volume form ω (see Proposition 5), this allows to define the divergence
div(θ) of a vector field θ:

Lθω = d(iθω) = div(θ) · ω.
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Lemma 2. (Hanspeter Kraft). Let θ = a ∂
∂x +b ∂∂y +c ∂∂z ∈ Vec(Dp). Then div(δ) =

ax + by + cz.

Proof. We have iθω = 1
x (θ(x)dz − θ(z))dx = 1

x (adz − cdx), hence

div(θ) · ω = d(iθω) =d(
1

x
(adz − cdx))

=
1

x2
((xda− adx) ∧ dz − (xdc ∧ dx).

Now we use the following equalities: da∧ dz = ax · dx∧ dz+ ay · dy ∧ dz, dx∧ dc =
cy · dx∧ dy+ cx · dx∧ dz, dy ∧ dz = y · ω, and dx∧ dy = p′(z) · ω (see above) to get

div(θ) = −a
x

+ ax −
y

x
ay +

p′(z)
x

cy + cz.

Since ya+ xb− p′(z)c = 0 we have a+ yay + xby − p′(z)cy = 0, hence

−a
x
− y

x
ay +

p′(z)
x

cy = by,

and the claim follows. �

There is another important formula which relates the Lie structure of Vec(Dp)
with the Lie derivative (see also [KL13, Lemma 3.2]).

Lemma 3. For θ1, θ2 ∈ Vec(Dp) and µ ∈ Ω(Dp) we have

i[θ1,θ2]µ = Lθ1(iθ2µ)− iθ2(Lθ1µ).

6. Duality.

The volume form ω ∈ Ω2(Dp) induces the usual duality between vector fields and

differential forms: the O(Dp)-isomorphism Vec(Dp)
∼−→ Ω(Dp) is given by θ 7→ iθω.

In particular, for every f ∈ O(Dp) we get a vector field νf ∈ Vec(Dp) defined by
i
f
ω = df , i.e. df ∧ η = νf (η) · ω.

Denote by Vec0(Dp) ⊂ Vec(Dp) the subspace of volume preserving vector fields,

i.e. Vec0(Dp) := {θ ∈ Vec(Dp)|div θ = 0}.

Proposition 7. The map f 7→ νf induces a C-linear isomorphism

O(D)/C ∼−→ Vec0(Dp).

Proof. Since d(iθ) = div(θ) · ω, we have the following commutative diagram:

0 −−−−→ C d−−−−→ O(Dp)
d−−−−→ Ω(Dp)

d−−−−→ Ω2(Dp) −−−−→ 0
x= '

xθ 7→iθω '
xh7→h·ω

O(Dp)
ν−−−−→ Vec(Dp)

div−−−−→ O(Dp)

Now the claim follows because the first row is exact (see Proposition 6). �

The following result can be found in [KL13, Theorem 3.26].
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Proposition 8. Any vector field ν ∈ Vec0(Dp) on the Danielewski surface Dp is
a Lie combination of locally nilpotent vector fields if and only if its corresponding
function with iνω = df is of the form (modulo constant)

(1) f(x, y, z) =
k∑

i=1,j=0

aijx
izj +

l∑

i=1,j=0

bijy
izj + (pq)′(z)

for a polynomial q ∈ C[z]. Any f ∈ O(Dp) bijectively corresponds to some νf ∈
Vec0(Dp) := Liealg U(Dp)⊕

⊕deg p−2
i=0 Czi(x ∂

∂x − y ∂
∂y ).

The corresponding functions are given as follows (see [KL13, Lemma 3.1]):

(2) fxiνx = − x
i+1

i+ 1
, fyiνy =

yi+1

i+ 1
, fνqz = (p(z)q(z))′.

We also recall the useful relation that describes the corresponding function of a
Lie bracket of two vector fields ν, µ ∈ Liealg U(Dp) (see [KL13, Lemma 3.2]):

(3) f[ν,µ] = ν(fµ),

where ν(fµ) is ν applied as a derivation to the function fµ. The function f[ν,µ] may
also be calculated by the following formula (see [KL13, formula after Lemma 3.2]):

f[ν,µ] = {fν , fµ} := p′(z)
(
(fν)y(fµ)x − (fν)x(fµ)y

)
+(4)

x
(
(fν)z(fµ)x − (fν)x(fµ)z

)
− y
(
(fν)z(fµ)y − (fν)y(fµ)z

)
,

where the subindex denotes the partial derivative to the respective variable.
Let I ⊂ Liealg U(Dp) be a non-trivial ideal and let Ĩ be the set of functions

corresponding to this ideal by the correspondence in (1). Since I is an ideal, we
have, using (3), that

(5)
{
ν ∈ I

(
⇔ fν ∈ Ĩ

)
and µ ∈ Liealg U(Dp)

}
=⇒ ν(fµ), µ(fν) ∈ Ĩ .

The algebraic vector fields νxi := p′(z)xi ∂∂y + xi+1 ∂
∂z , νyi := p′(z)yi ∂∂x + yi+1 ∂

∂z

on the Danielewski surface Dp are called shear fields for all i ∈ N0, and the vector

fields νhz := h′(z)(x ∂
∂x − y ∂

∂y ) are called hyperbolic fields for all h ∈ C[z].

Our next goal is to prove Theorem 2. We prove it in several steps and start with
the following Lemma.

Lemma 4. Let f be a regular function on Dp. Then f can be written uniquely as

f(x, y, z) =
∑k
i=l ai(z)x

i for some k, l ∈ Z.

Proof. Let us take the form of f as in (1) and replace y by p(z)/x. This yields to
ai(z) = bi(z)pi(z) for i ∈ N. �

Choose l, k ∈ Z such that al, ak 6= 0 and denote by deg(f) = (l, k) the pair of
min- and max-degree in x.

Lemma 5. Let f ∈ O(Dp). Then νx(f) and νy(f) are never non-zero constants.

Proof. Any regular function f of Dp can be written in the form
∑k
i=l ai(z)x

i by

Lemma 4. Then νx(f) =
∑k
i=l a

′
i(z)x

i+1, in particular, νx(f) is constant only if
a−1 is linear, which is not the case since a−1 is divisible by p. The case of νy(f) is
analogous. �

Lemma 6. Let deg f = (l, k) and l, k ≥ 1. Then deg νy(f) = (l − 1, k − 1).
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Proof. Let f =
∑k
i=l ai(z)x

i. Then νy(f) =
∑k
i=l(ip

′(z)ai(z) + p(z)a′i(z))x
i−1. If

ai(z) 6= 0, then ip′(z)ai(z) + p(z)a′i(z) 6= 0 and the claim follows. �

Lemma 7. Let deg f = (l, k), where k > l ≥ 0, then deg ν1z (f) = (l̃, k), where l̃ = l

if l ≥ 1 and l̃ > l if l = 0.

Proof. Let f =
∑k
i=l ai(z)x

i. Then the claim follows from the equality ν1z (f) =∑k
i=l̃ ip

′′(z)ai(z)xi. �

Proof of Theorem 2. Let I be a nontrivial ideal of Liealg U(Dp). Then there is a

nonzero f ∈ Ĩ, and since νx is locally nilpotent, there is k ∈ N such that ν(νk(f)) =

0, and then νk(f) ∈ C[x] \ C. Therefore, there is g ∈ Ĩ such that g ∈ Ĩ and
deg g = (l, k), where k, l ≥ 1. By applying Lemma 6 and Lemma 7 step by step,

we will get that here is h ∈ Ĩ such that deg h = (0, 0). Therefore, by Lemma 8,

q(z)xn ∈ Ĩ for all q ∈ C[z] and n ≥ 1.

Analogously, interchanging x and y, we get that q(z)yi ∈ Ĩ for all q(z) ∈ C[z] and

i ∈ N0. Since q(z)x ∈ Ĩ for all q(z), also νy(q(z)x) = (p(z)q(z)) ∈ Ĩ for all q(z), by

(4). Thus Ĩ contains all functions that correspond to vector fields in Liealg U(Dp)

or, equivalently, I = Liealg U(Dp), which concludes the proof. �

Lemma 8. Let h ∈ Ĩ, h ∈ C[z] \ C, then q(z)xn ∈ Ĩ for all q ∈ C[z] and n ≥ 1.

Proof. First we claim that there is an N ∈ N such that q(z)xn+1 ∈ Ĩ for all

q ∈ C[z] and n ≥ N . By (5), we get that νx(h) = h′(z)x ∈ Ĩ and νsz(h′(z)x) =

(p(z)s(z))′′h′(z)x ∈ Ĩ for all s ∈ C[z]. Let N = deg p′′h′ and n ≥ N . Then applying
(5) N − 1 times for νx we get

νN−1x ((p(z)s(z))′′h′(z)x) = ((ps)′′h′)N−1(z)xN ∈ Ĩ .

Now apply (5) once more for xn−Nνx and get

xn−Nνx(((ps)′′h′)N−1(z)xN ) = ((ps)′′h′)(N)(z)xn+1 ∈ Ĩ ,

and thus varying s(z) we get q(z)xn+1 ∈ Ĩ for all q ∈ C[z].
Hence

νy(zjxn) = ip′(z)zjxn−1 + jp(z)zj−1xn−1 ∈ Ĩ
for all j ∈ N∪ {0}. On the other hand, by the assumption xi ∈ Ĩ, and thus by (2),

we have xi−1νx ∈ Ĩ. Hence, by (4),

xi−1νx(yzj) = p′(z)zjxi−1 + jp(z)zj1xi−1 ∈ Ĩ

for all j ∈ N∪{0}. By taking suitable linear combinations of the above expressions

we see that xi−1 · (p′(z)) ⊂ Ĩ and xi−1 · (p(z)) ⊂ Ĩ, where (p′(z)) and (p(z)) denote
the ideal in C[z] generated by p′(z) and the ideal generated by p(z). Since p has
no simple roots by assumption, the ideal (p′(z), p(z)) generated by both p′(z) and

p(z) is equal to C[z] and thus xi−1 · (p′(z), p(z)) = xi−1 · C[z] ⊂ Ĩ. �
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