Groups of automorphisms of some
affine varieties

Inauguraldissertation
zur
Erlangung der Wiirde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultét
der Universitat Basel

von

Andriy Regeta

aus
Kalush, die Ukraine

Basel, 2015



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultét
auf Antrag von

Prof. Dr. Hanspeter Kraft

Dr. Jean-Philippe Furter

Basel, den 10. December 2015

Prof. Dr. Jorg Schibler, Dekan



creative
commons

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz

Sie diirfen:

@

das Werk vervielfaltigen, verbreiten und 6ffentlich zuganglich machen

Zu den folgenden Bedingungen:

Namensnennung. Sie miissen den Namen des Autors/Rechteinhabers in der
von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen
darf, Sie oder die Nutzung des Werkes durch Sie wiirden entlohnt).

Keine kommerzielle Nutzung. Dieses Werk darf nicht fiir kommerzielle
Zwecke verwendet werden.

OXVNS

Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise
veréndert werden.

* Im Falle einer Verbreitung missen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fallt,
mitteilen. Am Einfachsten ist es, einen Link auf diese Seite einzubinden.

« Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des
Rechteinhabers dazu erhalten.

* Diese Lizenz lasst die Urheberpersonlichkeitsrechte unberthrt.

Die gesetzlichen Schranken des Urheberrechts bleiben hiervon unberiihrt.

Die Commons Deed ist eine Zusammenfassung des Lizenzvertrags in allgemeinverstandlicher Sprache:
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Haftungsausschluss:

Die Commons Deed ist kein Lizenzvertrag. Sie ist lediglich ein Referenztext, der den zugrundeliegenden
Lizenzvertrag ubersichtlich und in allgemeinverstandlicher Sprache wiedergibt. Die Deed selbst entfaltet
keine juristische Wirkung und erscheint im eigentlichen Lizenzvertrag nicht. Creative Commons ist keine
Rechtsanwaltsgesellschaft und leistet keine Rechtsberatung. Die Weitergabe und Verlinkung des
Commons Deeds fuhrt zu keinem Mandatsverhaltnis.

Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Datum: 3.4.2009






To my parents.



vi



Contents.

Overview.
1. Acknowledgements
2. Introduction
3. Fundamentals
3.1.  Ind-groups and their Lie algebras
3.2.  Automorphisms of affine varieties
3.3.  Group actions and vector fields
3.4. Liealgebra of Aut(X) and action of Aut(A™) on Vec(A™)
3.5. Characterization of affine varieties
4. Outline of the articles
4.1.  Automorphisms of the Lie algebra of vector fields
4.2. Lie subalgebras of vector fields and the Jacobian Conjecture
4.3. Characterization of n-dimensional SL,,-affine varieties
4.4.  Automorphisms of Danielewski surfaces
References

Automorphisms of the Lie Algebra of Vector Fields on Affine

n-Space.
1. Introduction

2. Group actions and vector fields

3. Proof of the Main Theorem, part I
4. Etale Morphisms and Vector Fields
5. Proof of the Main Theorem, part I1
References

Lie subalgebras of vector fields on affine 2-space and the jacobian

conjecture.
1. Introduction
2. The Poisson algebra
3. Vector fields on affine 2-space
4. Vector fields and the Jacobian Conjecture
References

Group of automorphisms of some affins SL,, -varieties.
1.

oot N

Introduction and Main Results
Preliminaries

Automorphisms

Root subgroups

A special subgroup of Aut(X)
2-dimensional case
Higher-dimensional case

References

Groups of automorphisms of Danielewski surfaces.

1. Introduction and Main Results

2. Preliminaries

3. Automorphisms of Danielewski surface
4.  Module of differentials and vector fields

© O 00U NN ==

[ T
=k o O

17
17
19
20
23
25
29

31
31
32
36
39
42

44
44
45
46
48
48
49
53
56

58
o8
99
60
61



5. Volume form and divergence
6. Duality
References

62
63
66



GROUPS OF AUTOMORPHISMS OF SOME AFFINE VARIETIES
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2. INTRODUCTION

In 1872 FELIX KLEIN published his inauguration paper named Vergleichende
Betrachtungen ueber neuere geometrische Forschungen (see [Kle93]) for his profes-
sorship at the University of Erlangen (Bavaria, Germany). This paper acquired
world-wide fame among mathematicians under the name of Erlangen Programm.
KLEIN proposed that group theory, a branch of mathematics that uses algebraic
methods to abstract the idea of symmetry, was the most useful way of organiz-
ing geometrical knowledge. One can translate it into the modern mathematical
language as follows.

Study of geometrical objects via their transformation (automorphism,
birational transformation etc.) groups.

This approach was very fruitful in many areas of mathematics, for example, to
study manifolds via their diffeomorphism group, field extensions via their Galois
group, algebraic varieties via their automorphisms.

In particular, RICHARD P. FILIPKEWICZ proved that a real connected manifold is
determined by its group of diffeomorphism i.e. if M and N are real connected mani-
folds of class C* and C7 respectively, then an isomorphism ¢ : Diffk(M) — Diff/ (N)
of abstract groups implies equality j = k and that there exists a diffeomorphism
Y : M — N of class C*.
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In this thesis, we focus on the study of affine varieties via their automorphisms.
SHAFAREVICH introduced the structure of an infinite dimensional variety on the au-
tomorphism group Aut(A™), a so-called ind-variety (see Section 3). The aim of this
thesis is: Study the automorphism group of affine varieties within the framework
of ind-varieties.

The thesis is organized as follows. In Section 3 we introduce the basic concepts
and notions that we will need. In Section 4 we give an overview of the results in
the articles of this thesis. Thereafter we list all these articles. We work over the
field of complex numbers C (but all results hold true over algebraically closed field
of characteristic zero) if not explicitely stated otherwise.

3. FUNDAMENTALS

3.1. Ind-groups and their Lie algebras. In [Sha66] SHAFAREVICH introduced
the notion of an infinite dimensional algebraic group or shortly ind-group (see also
[Kum02]). It was introduced in order to study the automorphism group Aut(A")
of the affine n-space. Recently, FURTER-KRAFT and DUBOULOZ independently
showed that Aut(X) has the structure of an ind-group for any affine variety X.

Definition 1. An ind-variety is a set X together with a filtration Xy C X5 C ...
with the following properties

(a) X = U2, Xi;

(b) each X, has the structure of an algebraic variety;

(c) the inclusion X,, C X,,41 is a closed immersion.

In this case we denote X = lim X;. In case each X is affine we call X an affine

gy

ind-variety. We endow each ind-variety X = lim X; with the following so-called
—

ind-topology: a subset A C X is called closed (resp. open) if and only if AN X is

closed (resp. open) in X; for all 1.

Example 1. (1) Any (finite-dimensional) variety X is of course canonically an
ind-variety, where we take each X,, = X.
(2) If X and Y are ind-varieties, then X x Y is canonically an ind-variety, where
we define the filtration by
(X xY), =X, xY,,

and we put the product variety structure on X,, x Y.

(3) A>® = {(a1,a2,as,...) : a; € C and all but finitely many as are zero} is an
ind-variety under the filtration: A' ¢ A2 C A3 C ..., where A" C A™ is the set
of all the sequences with a,41 = ant2 = ... = 0, which can be identified with the

n-dimensional affine space.

(4) Any countable infinite set S = {xg,z1,...} is an ind-variety under the filtra-
tion S,, = {xo, 1, ..., Zn } which has the structure of a variety.

(5) Any vector space V of countable dimension over the field C is an affine ind-
variety. Take a basis {e;};>1 of V. This gives rise to a C-linear isomorphism A>
> a;e;. By transporting the ind-variety structure from A via this isomorphism,
we get an (affine) ind-variety structure on V. It is easy to see that a different choice
of basis of V' gives an equivalent ind-variety structure on V.

Definition 2. A morphism between ind-varieties V = J, Vi and W = {J,, Wi, is
amap ¢ : V — W such that for any k there is an m such that ¢(V;) C W,,, and the
induced map Vi, — W,,, is a morphism of varieties. Isomorphism of ind-varieties as
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well as products of ind-varieties are defined in the usual way. This allows to define
an ind-group as an ind-variety G with a group structure such that multiplication
G x G — G:(g,h) ~ g-h, and taking the inverse G — G : g — g~ !, are both
morphisms.

In a similar way we define the notion of ind-semigroup. Similarly as Aut(X)
is an ind-group, the semigroup of endomorphisms End(X) and the semigroup of
dominant maps Dom(X) have the structures of an ind-semigroups for any affine
variety X.

Definition 3. For any affine ind-variety X = lim X;, the morphisms X — A' are
—
the elements of lim O(X;). We call these morphisms the reqular functions on X
pn
and we denote O(X) :=1lim O(Xj,).
—

A closed subgroup of an ind-group G = lim G; is called algebraic if it is contained
—
in some G;. We call an element g € G algebraic if the closure of the group generated
by ¢ is an algebraic subgroup of G.

Definition 4. A map f : X — Y of ind-varieties is called a closed embedding, or
equivalently, a closed immersion, if for any n there exists m(n) such that f(X,) C
Y and flx, : X = Y,y is a closed embedding of varieties, f(X) is closed in
Y and moreover, f : X, — f(X,) is an isomorphism of varieties.

An ind-variety X is called irreducible if the underlying topological space is irre-
ducible, i.e. X is not the union of two proper closed subsets. Similarly, X is called
connected if the underlying topological space is connected.

Definition 5. Let X be an ind-variety with filtration (X,,). For any = € X, define
the Zariski tangent space T, (X) of X at x by

To(X) = lim T (X,.),

where T,(X,,) is the Zariski tangent space of X, at x. Note that z € X,, for all
large enough n.

A morphism f : X — Y induces a linear map (df), : To(X) — Ty (Y), for
any = € X, called the differential of f at x. Moreover, this satisfies the chain rule:
(d(g o f))z = (dg) ¢(a) © (df )z, for a morphism g : Y — Z. Hence, an isomorphism
f: X = Y of ind-varieties induces an isomorphism (df), : T0:(X) — Ty (Y), for
any x € X.

Proposition 1. [Kum02, Proposition 4.2.2] For an ind-group H, the Zariski space
T.(H) at the identity element e is endowed with a natural structure of a Lie algebra
which will be denoted by Lie H.

Moreover, if f : G — H is a group morphism between ind-groups, then the
derivative (df). : LieG — Lie H is a Lie algebra homomorphism.

As in the case of algebraic groups, an ind-group G is connected if and only if G
is irreducible (see [Kum02, Lemma 4.2.5]).

Definition 6. Let G be an ind-group. An algebraic element g € G is called
unipotent if it is either trivial or if the closure of the group (g) generated by g is
isomorphic to the additive group G, := CT. The subset of all unipotent elements
of G is denoted by G,.
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3.2. Automorphisms of affine varieties. By an endomorphism of the affine
n-space A" = C" we mean a map of the following form

[A" = A" a — f(a) = (filar, ..., an), ., fulas, ..., an)),

where f1, ..., fn € C[z1, ..., x,] are polynomials and we use the notation f = (f1,...,
fn). More generally, suppose X and Y are closed subvarieties of A" and A™ re-
spectively. A regular map f from X to Y has the form f = (f1, ..., fin) where the f;
are in the coordinate ring O(X) = C[zy, ..., x,]|/I where I is the ideal which defines
X, such that the image f(X) liesin Y.

An automorphism of X is an endomorphism that admits an inverse which is
an endomorphism too. We denote by Aut(X) the group of automorphisms and
by End(X) the semigroup of endomorphisms of X. A special case is X = A"
One defines the degree of f € End(A") as degf := max;deg f;. By Aff,, we
denote the group of affine transformations of A™ and by J,, the group of triangu-
lar automorphisms (i.e. the automorphisms (g1, ..., g,), where g; = g;(x4, ..., xy)
depends ounly on x;,...,z, for each 7). Note that (g1,...,g,) € J, if and only if
9i = a;x; + pi(xiy1, ..., x,) for all i, where a; € C* and p; € C[z;y1,...,2,]. This
shows that J, is, as an ind-variety, isomorphic to

(CH)" x (CaClz,] ®Clxp-1,2,] D ®Clxa, ..., zp]).

The group TAut(A™) of tame automorphisms is the subgroup of Aut(A™) generated
by Aff, and J,,. If n = 2, any automorphism of A" is tame. Moreover, Aut(A?) is
an amalgamated product of Affy and Jo with amalgamated subgroup Affy N Js.

Recently JEAN-PHILIPPE FURTER and HANSPETER KRAFT showed that Aut(X)
has a natural structure of an affine ind-variety for any affine variety X. To show it
we start with the following Lemma.

Lemma 1. ([St13, Lemma 3.8]). Let X and Y be affine varieties. Then the set of
morphisms Mor(X,Y") from X toY has a canonical structure of an ind-variety.

Proof. Let Y C A™ and denote by I C O(A™) the vanishing ideal of Y . The
countable dimensional vector space Mor(X,A™) = O(X)™ has the natural structure
of an ind-variety by Example 1. It follows, that

Mor(X,Y) = {f € Mor(X,A™)| ¢po f=0forall ¢ € I}

is closed in Mor(X,A™) and then it has the structure of an ind-variety. One can
prove that the ind-structure on Mor(X,Y") does not depend on the choice of the
embedding Y C A™. g

We state without proof the next Lemma.
Lemma 2. Let X, Y and Z be affine varieties. Then there is a bijection
Mor(X x Y, Z) +— Mor(X,Mor(Y, Z))
[z (y= f(z,y)))
Moreover, the bijection is an isomorphism of ind-varieties.

Proposition 2. ([St13, Proposition 3.7]). Let X be an affine variety. Then Aut(X)
has the structure of an ind-group, such that for any algebraic group G, the G-action
G x X — X corresponds to the ind-group homomorphism G — Aut(X).
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Proof. Take any closed embedding X C A™ and let p : End(A™) — Mor(X, A™) be
the canonical C-linear projection. Thus Mor(X, A") = h_r)np(End(A”)i) is filtrated

by finite dimensional subspaces and End(X) = lim End(X); is an ind-variety, where
—

End(X); = End(X)Np(End(A™);). From this construction it follows that End(X') x
End(X) — End(X), (f,g9) — fog is a morphism and hence End(X) is an affine
ind-semigroup. The set

Aut(X) = {(f,h) € End(X) x End(X)|foh = ho f =id}

is closed in End(X) x End(X) and then it has the structure of an ind-variety. As
End(X) is an ind-semigroup, the composition

Aut(X) x Aut(X) — Aut(X), ((f1, h1), (f2, h2)) = (f1 0 f2, ha 0 h1)
is a morphism and taking inverses
Aut(X) = Aut(X), (£, h) = (h, ).

is a morphism too. Hence, Aut(X) is an affine ind-group.

Let G be an algebraic group. If p : GxX — X is a morphism, then G — End(X),
g + pg is a morphism by Lemma 2, where p, : X — X is defined by p4(z) := p(g, x).
Hence G — End(X) x End(X), g + (pg,pg-1) is a morphism and it induces a
homomorphism of ind-groups G — Aut(X). Vice versa, if G — Aut(X) is a
homomorphism of ind-groups, then

G — Aut(X) C End(X) x End(X) — End(X)

is a morphism and then G x X — X is a G-action by Lemma 2. O

Remark 1. In fact, FURTER and KRAFT showed that the ind-group structure
described above is the unique ind-structure on Aut(X) which satisfies the so-called
universal property.

Remark 2. We define the locally closed affine ind-subvariety Et(A™) of End(A™)
by the condition that the determinant of the Jacobian matrix jac(f) of f is in C*.
By the same argument as in the previous proof Aut(A") is a closed subvariety of
Et(A™).

Remark 3. Note that the group of birational transformations Bir(P™) of projective
n-space P™ does not admit a structure of an ind-group (see [BF13]).

Example 2. The automorphism group Aut(A™) of the affine n-space has the
structure of an affine ind-group (due to Shafarevich, see [Sha66] and [Sha81]):
Aut(A™) = liLnAut(A”)i, where Aut(A™); is the variety of those g € Aut(A™) which
have deg g < i. The subgroup Aff,, C Aut(A") is algebraic and J,, C Aut(A"™) is the
closed subgroup consisting of algebraic elements, but it is not algebraic itself. More-
over, J,, has the filtration by closed algebraic subgroups. Similarly one turns the en-
domorphisms End(A™) into an affine ind-monoid through End(A™) = h_rr)l End(A™);,

where End(A™); = {f € End(A™)|deg f <i}.

3.3. Group actions and vector fields.
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3.3.1. Algebraic group actions. Let G be an algebraic group which acts on an affine
variety X. Then we get a canonical anti-homomorphism of Lie algebras ¢ : Lie G —
Vec(X) = Der(O(X)), A — €4, where the vector field €4 is defined in the following
way (see [Krall, I1.4.4]). Consider the orbit map u, : G — X, g — gz, and set

(€a)s = (dpz)e(A).

We say that v € Vec(X) is a locally finite vector field if for any f € O(X), the
vector space generated by {v*(f)|k € N} is a finite-dimensional vector subspace of
O(X). A vector field v € Vec(X) is called locally nilpotent if for any f € O(X)
there exist k € N such that v*(f) = 0.

3.3.2. Unipotent elements of Aut(X). Let X be an irreducible affine variety. One
has a bijective correspondence

Aut(X), = {unipotent elements in Aut(X)} «— {G, — actions on X}

given in the following way: if u € Aut(X) is unipotent, then G, = (u) C Aut(X)
and we get a G,-action on X by the homomorphism G, — Aut(X) that sends 1 to
u. Conversely, if p : G, — Aut(X) is a homomorphism, then u := p(1) € Aut(X)
is unipotent. Additionally, one has a bijective correspondence

{G, — actions on X} «— {locally nilpotent vector fields on X}

which is given in the following way: if p : G, x X — X is a G,-action, then the
comorphism p* : O(X) — O(X)[t] induces a derivation D : O(X) — O(X) and
the corresponding vector field is locally nilpotent. Vice versa, let v be a locally
nilpotent vector field on X, then it induces a derivation D : O(X) — O(X),
D(f) := dp*(f)|t=0. Therefore, D induces the map G, — Aut(X), ¢ — Exp(tD)
which defines a G,-action on X, where the comorphism of Exp(tD) is

D:0(X) = O(X), frs_ i—jDi(f).
i=0

For more details on the theory of locally nilpotent vector fields see [Fre06].

Let u € Aut(X) be unipotent. We denote by O(X)* = {f(z) € O(X)|f(u"tx) =
f(x)} the invariant ring of u. If v is the locally nilpotent vector field that corre-
sponds to u, we have O(X)* = Kerv. Note that if v is a locally nilpotent vector
field, then fv is also locally nilpotent for any f € Kerv = O(X)*.

Definition 7. Let v € Aut(X) be unipotent and let v be the corresponding locally
nilpotent vector field. For each f € O(X)" we denote by f - u the unipotent
automorphism of X corresponding to the locally nilpotent derivation fr and we
call f-u a modification of u.

The most basic unipotent elements in Aut(A™) are the translations, i.e. automor-
phisms of the form (z1+e¢y, ..., zn + ¢, ) for some (cy, ..., ¢,) € C™*. A modification of
(21,22, ...,2n + 1) is an automorphism of the form (z1, 2, ..., Zn + f(21, ey Tn_1))
for some polynomial f(z1,...,2,—1) which depends only on 1, ...,z,_1.

3.3.3. Tangent space of End(X) and Aut(X). For any x € X we have a morphism
e : End(X) —» X, ¢ — ¢(x), with differential dp, : T End(X) — T, X, where
e := idx is the identity. Thus, for any H € T, End(X), we obtain a vector field g
defined by (SH)I = dﬂm(H)

The following result and its proof is due to FURTER-KRAFT.
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Proposition 3. The tangent space T, End(X) is canonically isomorphic to the
vector fields Vec(X), where the isomorphism is given by H — £p.

Outline of Proof. We choose a closed embedding X C C" such that O(X) =
Clz1, ..., xpn]/I(X). This defines a closed embedding of ind-varieties End(X) C
Mor(X,C™), hence Tiq(End(X)) C O(X)™. By definition, (fi, ..., fn) € End(X) if
and only if F(fi,..., fn) =0 for all F' € I(X). Therefore, we have

H = (h1,...,h,) € Ta(End(X)) <= F(T1 + €hy,...,Tp + €hy,) = 0 for all F € I(X)
" OF
— ;hia—%(fl, oy Tp) =0 for all F e I(X).

The latter means that ) . ; hi% defines a derivation oy of O(X) by setting

Sy = hi, and every derivation & of O(X) arises in this way. Thus, we obtain
an isomorphism Tiq(End(X)) = Der(O(X)) = Vec(X), given by H + 6. Note
that dp, as a vector field, is given by (6g )z = (h1(2), ..., hn(z)) € T X = C™.

On the other hand, the morphism pu, : End(X) — X is given by

(froes fn) = (fr(2), s fu(2) € X C C™
It follows that

o (@1 + eha (&), s T + ho(2)) = @ + (A (@), oy hu(2))
for H = (h, ..., hy) € Tia End(X). Hence, (§g)s = (hi(z), ..., hn(2)) = (0m)s. O
The following result is due to HANSPETER KRAFT.

Proposition 4. Let G be an ind-group which acts on affine variety X. Then the
map & : LieG — Vec(X), A — &4, is an anti-homomorphism of Lie algebras. For
G = Aut(X), the map £ : LieG — Vec(X) is injective, so that Lie Aut(X) can be
considered as a Lie subalgebra of Vec(X).

In the following we will always identify Lie Aut(X) with its image in Vec(X).
Note that Lie Aut(X) contains all locally finite vector fields. Indeed, if ¢ is a locally
finite vector field of Vec(X), then there exists an algebraic subgroup G of Aut(X)
such that 6 € Lie G (see [CDO03]). On the other hand, it is unknown and it is a very
interesting problem, whether Lie Aut(X) is generated by locally finite vector fields
if Aut(X) is generated by algebraic subgroups.

3.3.4. The case of Aut(A™). In this section we are going to compute Lie Aut(A™).
The vector fields on A™ have the following form: Vec(A™) = Der(Clz1, ..., z,]) =

{fi01 + -+ fuOnlfi € Clz1,...,x5]}, where 0; := %. Recall that the divergence

of a vector field § = Y7 | pia%i is defined by Divd := " | ggi. We define
Vec?(A™) = {6 € Vec(A™)| Divd = 0}.

and
Vec(A™) = {6 € Vec(A™)|Divé € C}.
Note that both Vec’(A”) and Vec®(A™) are Lie subalgebras of Vec(A™) because

Div([v, p]) = v(Div p) — u(Divv),
where v, u € Vec(A™).
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The following Lemma can be found in [Sha81].

Lemma 3. The Lie algebra Vec® (A™) is generated by locally nilpotent vector ﬁelds
of the form m;5— a where m; is a monomial in the x; with j # i. Moreover, Vec” (A™)
1s a stmple Lie algebm

Proof. (HANSPETER KRAFT) (a) If m = 2% 2% ... 25 is a monomial we set m; :=

m/xf", for i =1,...,n. Hence,
D0 _om o om o
U x; 0wy Ox;Ox; Oz Oxj

where j # i. It follows that for a given & = Y1 1 fi2- 55 € Vec”(A™) we can

find a linear combination of the brackets [z f a?; S g 9_] which is of the form ¢ =

D i it fiz2 For —hj52 o Then & — 5’ =hj2 e . Since Div(§ — &) = 0 we see that h;
does not depend on :cj, and SO h] 5, is a sum of vector fields of the form c;m; %,
J J

where ¢; € C*.
(b) Let I C Vec’(A™) be a nonzero ideal. If £ = "7 fza € I, then | 2j’§] =

Sy gg; a% € I. It follows that = 1719 € I for some k, and so % € [ for all ¢,
4] ] _ 0

because [I’k 57 Do) = 7%. If m; is a monomial which does not depend on x;,

then [m; 2-, 2] = —2ms € I. Hence, I = Vec’(A™) by (a). O

my Ox;’ Oy Oz, 61/

Note that Vec®(A") = Vec’(A") ® CE, where E := x; 22~ 8a: ++ a5 In fact,
FE is a locally finite vector field.
The following result and its proof is due to HANSPETER KRAFT.

Proposition 5. The map £ induces an anti-isomorphism of Lie algebras
Lie Aut(A"™) — Vec®(A"™) := {§ € Vec(A")|Divé € C}.

Proof. We note first that by Remark 2, Aut(A™) is a closed subvariety of Et(A™).
It is not difficult to see that Et(A™) is an ind-subvariety of End(A™). This shows
that

Lie Aut(A™) C T. Et(A™) = T.{f € End(A")|jac(f) € C*}.
For H = (p1,...,pn) € End(A™) we have jac(id +e¢H) =1+¢}_, 3 3’“ mod €2, hence

T.Et(A") = Vec®(A™). Now it suffices to remark that Vec’ (A”) is generated by
locally nilpotent vector fields and that F is locally finite. This proves the claim. [

3.4. Lie algebra of Aut(X) and action of Aut(A™) on Vec(A™).

Theorem 17. Let G be a connected ind-group. If LieG is a simple Lie algebra,
then any homomorphism F : G — H of ind-groups is either trivial or the kernel is
a discrete subgroup contained in the center of G.

Proof. Let G = UG,;. By definition, LieG = UT.G; and since Lie G is simple,
(dF). : LieG — Lie H is either trivial or injective. If (dF). is trivial, the restriction
of F' to each G; is a constant map, therefore F' is trivial (because G is connected).
If (dF). is injective, F' has discrete kernel K. Then G acts on K by conjugation.
Since G is connected it follows that K is included into the center Z(G) of G. O
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The Lie algebra of SAut(A™) which is isomorphic to Vec’(A™) is a simple Lie alge-
bra. But we do not know whether this implies simplicity of the ind-group SAut(A™)
i.e. whether there exists a nontrivial closed normal subgroup of SAut(A™). More-
over, KRAFT recently proved that any nontrivial ind-homomorphism from SAut(A™)
to an ind-group H is either trivial or is a closed immersion (see [Kral5, Theorem
1.4]). Note that in [Dan74] (see also [FL10]) it was shown that group SAut(A?) is
not simple as an abstract group.

3.5. Characterization of affine varieties. As we have mentioned in Section
3.2, End(X) and Aut(X) have the structure of an ind-semigroup and an ind-group
respectively for any affine variety X. Recently HANSPETER KRAFT showed the
following result.

Proposition 6. Let X, Y be affine varieties. Assume that we have an isomorphism
End(X) 2 End(Y) of ind-semigroups. Then X =Y.

Proof. For x € X denote by v, € End(X) the constant map with value z. Then
the map tx : X — End(X),  — 7., is a closed immersion. In fact, it is clearly a
morphism, and there is a retraction given by the morphism ev,, : End(X) — X,
¢ — (o).

Now we remark that the closed subset ¢tx(X) C End(X) of constant maps is
characterized by ¢tx(X) = {¢ € End(X)|p o) = ¢ for allyp € End(X)}. This
implies that every isomorphism of ind-semigroups 7 : End(X) — End(Y") defines a
bijective morphism 7|, (x) : tx(X) = ty(Y). The claim follows since the inverse
map is given by 771, (y). O

A generalization of this result can be found in [AK14], where the authors con-
sidered just abstract isomorphism of semigroups of endomorphisms.

On the other hand we can not expect to have such a result if we replace End(X)
by Aut(X) since for most affine varieties X, Aut(X) is finite. Recently, HANSPETER
KRAFT proved the following result.

Theorem 18. ([Kral5, Theorem 1.1]). Let Y be a connected affine variety. If
Aut(A™) =2 Aut(Y) as ind-groups, then Y = A™ as varieties.

Therefore, the affine n-space is determined by its automorphism group in the
category of connected affine varieties. There are some futher results in this direc-
tion in [Reglhb]. It is of interest to discover more varieties which are determined
by their automorphism groups. Moreover, A" is also determined by its special au-
tomorphism group U(A™) in the category of connected affine varieties, where by
U(A™) we mean the subgroup of Aut(X) generated by all closed subgroups U such
that U = C*. Note that U(X) is not necessarily an ind-group, i.e. U(X) is not
necessarily closed in Aut(X). By an algebraic isomorphism ¢ : U(X) — U(Y) we
mean an abstract isomorphism of abstract groups such that the restriction of ¢
to any closed one-dimensional unipotent subgroup is an isomorphism of algebraic
groups.

Theorem 19. Let Y be a connected affine variety. If U(A™) and U(Y') are alge-
braically isomorphic, then' Y = A™ as varieties.
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4. OUTLINE OF THE ARTICLES.

4.1. Automorphisms of the Lie Algebra of Vector Fields on Affine n-
Space. In this section we describe the results of the joint paper [KRegl5] with
HANSPETER KRAFT and give some ideas of the proofs.

The group Aut(A™) acts on Vec(A™) in the usual way. For ¢ € Aut(A™) and
0 € Vec(A™) we define

Ad(¢)d := ¢* ' 00 ¢,

where we consider ¢ as a derivation §: C[zy, ..., x,] = Clz1, ..., z,] and ¢*: C[zq, ...,
xn] = Clx1,...;xn], f — fo@, is the co-morphism of ¢. It is shown in [Kul92]
that Ad: Aut(A™) — Autpic(Vec(A™)) is an isomorphism, where Autyic(Vec(A™))
denotes the group of automorphisms of the Lie algebra Vec(A™).

In more geometric terms, considering § as a section of the tangent bundle TA™ =
A" x C™ — A™ | one defines the pull-back of § by

¢*(6) := (dp) ' 0500, e, ¢*(0)a = (dda) ' (34(a)) for a € A™.

Clearly, ¢*(§) = Ad(¢~1)s. However, the second formula above shows the well-
known fact that the pull-back ¢*(d) of a vector field § is also defined for an étale
morphism ¢ : A" — A™. More precisely, let ¢ : A™ — A™ be an étale morphism.
For any vector field 6 € Vec(A™) there is a vector field ¢*(d) € Vec(A™) defined
by ¢*(8)q 1= (do); '04(a) for @ € A™. It is uniquely determined by ¢*(6)¢*(f) =
¢*(0f) for f € Clxy,...,xy]. The map ¢* : Vec(A™) — Vec(A™) is an injective
homomorphism of Lie algebras satisfying ¢*(hd) = ¢*(h)¢*(9) for h € Clxy, ..., ).
Moreover, (10 ¢)* = ¢* o n*.

First, we give a short proof of the fact that Auty;e(Vec(Clzy, ..., z,])) = Aut(A™)
in [KRegl5, Theorem 3.1]. In order to prove this we first note that the map

Ad : Aut(A™) — Autpie(Vec(A™))

is injective. To show surjectivity we consider the subgroup S = (CT)™ C Aff,, of
translations. Then s := Lie S = (9,,,...,0s,). Let 6 : Vec(A") — Vec(A") be an
isomorphism and 6(s) = u. We show that u is generated by locally nilpotent vector
fields too. Therefore, u is a Lie algebra of some unipotent subgroup U C Aut(A™).

Because centyec(an)(s) = s it follows that centyeean)(u) = u. By using this, we
show that the orbit maps pug : S — A" and py : U — A" are isomorphisms.
Then one sees that ¢ := g OdJoual has the property that ¢pouo¢=! = 1)(u) for all
u € U. Hence, the automorphism 6’ := Ad(¢) o 6 € Autrie(Vec(A™)) sends Lie(S)
isomorphically onto itself. Then, one proves that there is an a € Aff,, such that
Ad(«) o @ is the identity on Lie(Aff,,). From here we finish the proof by showing
that in case 6 is the identity on Lie(Aff,), it is the identity on Vec(A™).

The aim of [KRegl5] is to prove the following result about the automorphism
groups of Lie algebras Vec’(A™) and Vec®(A™).

Theorem 20. [KRegl5, Main Theorem| There are canonical isomorphisms of
groups

Aut(A™) 2 Autpe(Vec(A™)) 22 Autye(Vec®(A™)) 22 Autpie(Vec®(A™)).
Remark 4. (a) The theorem above holds over any field K of characteristic zero.

(b) HANSPETER KRAFT showed that the groups in Theorem 20 have a natural
structure of ind-groups and that the maps are all isomorphisms of ind-groups.
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To prove Theorem 20 it is enough to show that Aut(Vec’(A™)) = Aut(A™). In
order to do so, we first show that the canonical map

(1) Ad s Aut(A") — Autpse(Vec®(A™))

is injective. Therefore, it is enough to show surjectivity of Ad.
Recall that a DARBOUX polynomial of § is a nonconstant polynomial f € Clzy, ..., z,]
such that 0(f) = hf for some h € Clzy, ..., z,].
If n = 1 it is easy to see that Ad from (1) is surjective, hence we can assume that
n > 2. Let 6 be an automorphism of the Lie algebra Vec’(A™). Put §; := 0(d,, ).
Then the vector fields 41, ..., §, are pairwise commuting and C-linearly independent.
Since 05, acts locally nilpotently on Vec? (A™), the same holds for 4;.
In the following we will use vector fields with rational coefficients:
Vec"(A™) := C(21, ..., Tn) @[, ....0,] VeC(A™) = @C(xl, vy Ty ) O, -
i=1
We first show that the é1,...,d,, do not have a common DARBOUX polynomial.
Hence one shows that there is an étale morphism ¢ : A™ — A™ with §; = ¢*(0s,)
for all i. Then the composition 8 := 6~ o ¢* : Vec’(A™) — Vec’(A") is an
injective homomorphism of Lie algebras and 6'(8,,) = 8,,. Hence, Lemma 5.4 from
[KRegl5] implies that 8’ = Ad(s) = (s7!)*, where s € Aut(A") is a translation,
hence 6 = (¢ o s)*. Now we show that ¢ := ¢ o s is an automorphism of A", and so
6 = Ad(¢~!) as claimed.
As a consequence of Theorem 20 we get the following result which is due to
KuLkoV, (see [Kul92, Theorem 4] cf. [KRegl5, Corollary 4.4]).

Corollary 1. If every injective endomorphism of the Lie algebra Vec(A™) is an
automorphism, then the Jacobian Conjecture holds in dimension n.

Remark 5. In fact, one can show that if every injective endomorphism of the
Lie algebra Vec’(A™) is an automorphism, then the Jacobian Conjecture holds in
dimension n.

Remark 6. It was proved by BELOV-KANEL and YU that every automorphism
of Aut(A™) as an ind-group is inner (see [BYul2]). Using Theorem 20 and Re-
mark 4(b), one can give a short proof of this and extend it to the closed subgroup
SAut(A™) C Aut(A™) of automorphisms with Jacobian determinant equal to 1.

4.2. Lie subalgebras of plane vector fields and the jacobian conjecture.
In this section we describe the main results of the paper [Reglba] and indicate some
ideas of the proofs.

It is a well-known consequence of the amalgamated product structure of Aut(A?)
that every reductive subgroup G C Aut(A?) is conjugate to a subgroup of GLy(C) C
Aut(A?), ie. there is a 1 € Aut(A?) such that Gy~ C GLy(C) ([Kam79], cf.
[Kr96]). The “Linearization Problem” asks whether the same holds for Aut(A™).
It was shown by Schwarz in [Sch89] that this is not the case in dimensions n > 4
(cf. [Kn91]).

In [Regl5a] we consider the analogue of the Linearization Problem for Lie alge-
bras. By Proposition 5 the Lie algebra Lie(Aut(A?)) is canonically isomorphic to
the Lie algebra Vec®(A?). The Lie subalgebra

L := C(2%9, — 22y0,) ® C(x0, — yd,) ® CI, C Vec’(A?) C Vec®(A?),
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where 0, := 8% and 9y := 8%7 is isomorphic to sls, but not conjugate to the standard
sly == (20y,y0,, 20, — ydy) C Vec®(A?) under Aut(A?) (see [Reglba, Remark
4.2]). This shows that the Linearization Problem for Lie Aut(A?) does not hold.
However, for some other Lie subalgebras of Vec®(A?) the situation is different. Let
Aff3(C) C Aut(A?) be the group of affine transformations and SAff5(C) C Aff(C)
the subgroup of affine transformations with determinant equal to 1, and denote
by affy = (0x, Oy, ©0s, Y0y, 0y, y0y), respectively saffy = (05,0, 20y, yOs, v0z —
y0Oy) their Lie algebras. The first result we prove is the following (see [Reglba,
Proposition 3.6]). For f € Clz,y] we set Dy := f,0, — f,0, € Vec®(A?). Note that
every vector field with divergence 0 has this form.

Theorem 21. Let L C Vec®(A?) be a Lie subalgebra isomorphic to saffz. Then
there is an étale map ¢: A®> — A? such that L = ¢*(saffy). More precisely, if
(Dy,Dy) is a basis of the solvable radical of L, then

L={(Dy,Dy,Ds2,Dy2, Dy,
and one can take ¢ = (f,g).

In order to prove this result we introduce the Poisson algebra P as the Lie
algebra with underlying vector space C[z, y] and with Lie bracket {f, g} := j(f,g) =
frgy — fygs for f,g € P.

There is a canonical surjective homomorphism of Lie algebras p : P — Vec” (A?%),
h — Dy := hy0y — hy0,, with kernel kery = C. For f,g € C[z,y| such that
{f,9} € C* we put

Pfﬂ = <1vagvf27fgvg2> CP.

This Lie algebra is isomorphic to P<s := (1,z,y, 2% xy,y?). Clearly, Ps, = Pf, 4
if (1, f,g) = (1, f1,91)- Denoting by rad L the solvable radical of the Lie algebra L
we get rad Py, = (1, f,g) and Py 4/rad Py g4 = sly. Then we show (see [KRegl5,
Proposition 2.8]) that each subalgebra of P isomorphic to P<s is equal to Py 4 for
some f,g € Clx,y], where {f,g} € C*. The proof is based on the fact that we
can easily compute the centralizer centp(f) of f € P and then by using defining
relations of P<s conclude the result.

Now let L C Vec®(A?) be a Lie subalgebra isomorphic to saffs. Then L =
[L,L] C [Vec®(A™),Vec®(A™)] = Vec’(A™). Hence, we show that it suffices to
check that Q := p~'(L) C P is isomorphic to P<s. From this one shows that
each subalgebra of Vec?(A?) isomorphic to saffy = p(P<2) is equal to Ly, =
(Dg,Dy,Dy2,Dy2, Dgg) = ¢*(saffs), where ¢ = (f,g) : A2 — A? is an étale map.

We can extend Theorem 21 to the following result.

Theorem 22. Let L C Vec®(A?) be a Lie subalgebra isomorphic to affy. Then there
is an étale map ¢: A — A? such that L = ¢*(affs). More precisely, if (D, Dy) is
a basis of the solvable radical of [L, L], then
L= <Df7D97foang»ngang%

and one can take ¢ = (f,g).

Let L C Vec®(A?) be isomorphic to affy. Then L = [L,L] ® CD for some
D € Vec®(A™) and [L, L] = saffy C [Vec®(A™), Vec®(A™)] = Vec”(A™). Therefore,
L = ¢*(saffy) ® CD for some étale map ¢ : A2 — A2 We claim that ¢*(affy) = L.

To show this we first note that ¢*(affy) = Ly, ® CE, where E is the image of the
Euler element of affy. Since Vec®(A?) = Vec’(A?) @ CD’ for any D’ € Vec®(A?)
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with Div D’ # 0, we can write D = aE + F with some a € C* and F € Vec’(A?)
i.e., F = Dy, for some h € Cz,y]. By construction, F = D — aF commutes with
M := (Dy2,Dy2,Dysy) = sly. Hence, we get {h, f?} = ¢, where ¢ € C. Thus
c={h, f?} = 2f{h, f} which implies that {h, f} = 0. Similarly, we find {h, g} = 0,
hence it is not difficult to see that h € C and so Dy, = 0 which implies D = aFE and
the proof follows.

As a consequence of the classification above, we obtain the next result (see
[Regl5a, Theorem 4.1, Corollary 4.4]). Recall that a Lie subalgebra of Vec(A?) is
algebraic if it acts locally finitely on Vec(A?).

Theorem 23. The following statements are equivalent:
i) The Jacobian Conjecture holds in dimension 2;

ii) All Lie subalgebras L C Vec®(A?) isomorphic to saffy are conjugate under Aut(A?);
iii) All Lie subalgebras L C Vec®(A?%) isomorphic to affy are conjugate under Aut(A?);
iv) All Lie subalgebras L C Vec®(A?) isomorphic to affy are algebraic;

v) All Lie subalgebras L C Vec®(A?) isomorphic to saffy are algebraic.

The implication (i) = (ii) is easy and follows from Theorem 21. To show the
implication (ii) = (iii) we consider a Lie subalgebra L C Vec®(A?) isomorphic to
affy, and set L' := [L, L] = saffs. By (ii) there is an automorphism ¢ € Aut(A?)
such that L' = ¢*(saffy). It follows that ¢*(affs) = L since L is determined by
rad(L’) as a Lie subalgebra, by [Reglba, Proposition 3.9].

To show the implication (iii) = (iv) we consider a Lie subalgebra L C Vec®(A?)
isomorphic to affs. Then by (ili) L = ¢*(affz) for some ¢ € Aut(A™). Hence,
L = Lie ¢(Aff2(C)) and the claim follows. The implication (iv) = (v) one can show
by using the fact that saffs = [affs, affs].

Assume (v) holds. Then any L C Vec®(A?) isomorphic to saffs is equal to Lie G,
where SAff(C) = G C Aut(A?). Since there is a subgroup H of G isomorphic
to SLa(C), we show that (i) follows from the fact that all subgroups of Aut(A2)
isomorphic to SLy(C) are conjugate.

4.3. Characterization of n-dimensional SL,-varieties. In this section we give
the main results of the paper [Regl5b] and some ideas of the proofs.

In the joint paper [KRZ15] we show that for n 3 a normal affine SL,-variety
of dimension n is isomorphic to a quotient A} := C"/u4 where the cyclic group
pq = {€ € C*|¢4 = 1} acts by scalar multiplication on C". For n = 2 there are two
more cases, namely SLo /T and SL2/N where T' C SLs is the torus of the diagonal
matrices and N = N(T) is the normalizer of T. The main result of the paper
[Regl5b] shows that a normal n- dimensional affine SL,-variety is determined by
its automorphism group. More precisely, we have the following result. Theorem
11. Let X be a normal affine SL,,-variety of dimension n, i.e. X =2 A", SLy /T or
SLs /N, and let Y be any normal affine variety. If Aut(Y) is isomorphic to Aut(X)
as ind-groups, then Y is isomorphic to X as varieties. Theorem 11 is a special case
of the next theorem where we include the case of a non-normal irreducible Y . The
coordinate ring of And is given by

OAy) =CaClry, - ,Tplka

If d > 2, then 0 € A} is an isolated singularity and so every automorphism of A7
fixes 0. This implies that the non-normal varieties Aj 4, s = 2, with coordinate ring

O( ZIL’S> =Co® (C[.Z’l, ...,xn]kd
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and normalization n : A} — A% _, have the same automorphism group as A} . Here
is the main result.

Theorem 24. Let Y be an irreducible affine variety. (a) If Aut(Y) = Aut(A])) as
ind-groups, for some nl,d2, then Y = Axy s for some s > 1.

(b) If Aut(Y) = Aut(SL2/T) as ind-groups, then Y = SLo /T as varieties, and
the same holds for SL2/N.

We also have some extensions of these results for the special au- tomorphism
group U(X) which we will formulate below.

In this paper we show a similar result as in Theorem 18 for a normal irreducible
affine n-dimensional SL,,-variety X. It is shown in [KRZ15] that in case n > 3 any
such X is isomorphic to Ay i.e. to the quotient of C™ by a cyclic group pg = {£ €
C*|¢? = 1}, d > 1, where the action is given by & (21, ..., 7,) = (€21, ..., £x,). Later
on we consider only the case d > 1. In case n = 2, X can only be isomorphic to
SLy /T, SLy /N(T) or 2-dimensional C? /4 (see [Regl5b, Lemma 5] cf. [Pop73]),
where T is the standard subtorus of SLy and N(T') denotes the normalizer of 7.

The main result of this paper shows that any normal irreducible affine n-dimensio-
nal SL,,-variety is determined by its automorphism group in the category of normal
affine irreducible varieties.

Theorem 25. Let X = SLy /T,SLy /N(T) or Az and Y be an irreducible normal
affine variety. If Aut(Y) =2 Aut(X) as ind-groups, then Y = X as varieties.

In fact, Theorem 25 is a particular case of Theorem 26.

In case Y is not necessarily normal, the situation changes since Aut(4y) is canon-
ically isomorphic to Aut(Aj) for any s € N, where Aj is a variety with a ring of
regular functions O(43) = C® @, Clz1, ..., Tn)ar, where Clz1, ..., x,]ax denotes
the homogeneous polynomials of degree dk.

Theorem 26. Let Y be an irreducible affine variety.
(a) if Aut(Y) = Aut(Ag) as ind-groups, then Y = A3 for some s € N,
(b) if X 2 SLy /T or X 2 SLy /N(T) and Aut(Y) = Aut(X), then Y =2 X.

Theorem 26 follows from Theorem 28 if X is different from SLy /T, SLo /N(T),
C2/py and C2?/py. By comparing weights of root subgroups of the automorphisms
groups of mentioned varieties with respect to standard subtori, we see that SLo /T
can only be isomorphic to C2/ug and SLy /N(T') can only be isomorphic to C2/py.
To distinguish SLy /T from C?/us by their automorphism groups we remark that
C?/uq admits a faithfull action of 2-dimensional torus and SLy /T" does not. Anal-
ogously, we distinguish SLy /N (T') from C?/u4 by their automorphism groups.

Note that an isomorphism ¢ : Aut(X) — Aut(Y) of ind-groups induces an
algebraic isomorphism ¢* : U(X) — U(Y). In case U(X) and U(Y) are closed
subgroups of Aut(X) and Aut(Y’) respecively, ¢* is an isomorphism of ind-groups.

Theorem 25 is extends to the following result.

Theorem 27. Let Y be an irreducible affine normal variety.

(a) U(A3) = U(SLy /T). Moreover, if U(A3) = U(Y), then Y is isomorphic
either to A3 or to SLy /T,

(b) U(A2) =2 U(SLy /N(T)). Moreover, if U(A2) 2 U(Y), then Y is isomorphic
either to A3 or to SLy /N(T),

(c) Let X be isomorphic to A%, SLy /T or to SLy /N(T) except A3 and A3 and
UX) 2 U(Y), then Y = X.
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If we skip the condition of normality on Y, we get the following result.

Theorem 28. Let X = Ay, SLy /T or SLy /N(T) and Y be an irreducible affine
variety. Let also U(Y) and U(X) are algebraically isomorphic. Then
(a) ifn=2and X = Ay or SLy /T, thenY = A§ for some s € N orY = SLy /T,
(b) if n = 2 and X = Ay or SLy /N(T), then Y = A3 for some s € N or
(c) otherwise, normalization of Y is isomorphic to X and moreover, Y = A% for
some s € N.

To prove this theorem, first, we show that all tori of maximal dimension U(X)
are congugate, where X is as in Theorem 28. Then by comparing weights of root
subgroups of U(X) and U(Y') with respect to standard subtori we conclude the
result.

4.4. Groups of automorphisms of Danielewski surfaces. In [LR15] we con-
sider Danielewski surfaces D, = {(z,y,2) € C3|zy = p(z)}, where p(z) € C[2] is
a polynomial of degree > 2 with no multiple roots. The letter implies that D, is
smooth. As an example, we have SLy /T =V (zy — 2> + z) = D,(,_1).

Let X be an affine variety. Let us denote by ua the cyclic group of order 2, which
acts on C? in the following way: ¢ - (z,y) = (£x,£y), where £ € up. In [Regl5b,
Proposition 10] it is shown that there is an abstract isomorphism ¢ : U(SLsy /T) —
U(C?/u3) such that the restriction of ¢ to any algebraic subgroup U = C7 is
an isomorphism of algebraic groups. Note that U(C?/us) is a closed subgroup of
Aut(C?/puy) (see [Regl5b, Proposition 10]) and U(SLy /T) = Aut’(SLy /T) is a
closed subgroup of Aut(SLy /T'). Hence, U(SLy /T) and U(C?/us) are ind-groups.

Theorem 29. The ind-groups U(SLy /T) and U(C?/us3) are not isomorphic.

To prove this we introduce the Lie subalgebra Lie™® U(C2/uy) of Vec(C?/us)
generated by locally nilpotent vector fields on C2/us. By using the fact that C2/us
has an isolated singular point, we show that Lie™® U/(C2/us) is not a simple Lie
algebra. On the other hand, we show that Lie subalgebra Lie* U(D,) of Vec(D,)
generated by locally nilpotent vector fields on D, is simple.

Theorem 30. Let D, be a Danielewski surface, where degp > 2. Then Lie™ U(D,)
is a simple Lie algebra.
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Automorphisms of the Lie Algebra of Vector
Fields on Affine n-Space

Hanspeter Kraft Andriy Regeta
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Abstract

We study the vector fields Vec(A™) of affine n-space A", the subspace Vec®(A™)
of vector fields with constant divergence, and the subspace Vec”(A™) of vector fields
with divergence zero, and we show that their automorphisms, as Lie algebras, are
induced by the automorphisms of A™:

Aut(A™) =5 Autpie(Vee(A™)) =5 Autpie(Vec(A™)) =5 Autpie(Vec(A™)).

This generalizes results of the second author obtained in dimension 2, see [Reg13].
The case of Vec(A™) goes back to KULIKOV [Kul92].

This generalization is crucial in the context of infinite-dimensional algebraic
groups, because Vec®(A™) is canonically isomorphic to the Lie algebra of Aut(A™),
and Vec?(A™) is isomorphic to the Lie algebra of the closed subgroup SAut(A™) C
Aut(A™) of automorphisms with Jacobian determinant equal to 1.

Keywords. Automorphisms, vector fields, Lie algebras, affine n-space.

1 Introduction

Let K be an algebraically closed field of characteristic zero. Denote by Vec(A™) the Lie
algebra of polynomial vector fields on affine n-space A™ = K":

Vec(A") = Der(K [z, ..., x,]) = {Zﬁ&il | fi € K[y, ... ,xn]}
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where we use the standard identification of a derivation § with Y-, 6(z;)-2. The group
Aut(A™) of polynomial automorphisms of A™ acts on Vec(A™) in the usual way. For
¢ € Aut(A") and § € Vec(A") = Der(K|[xy,...,x,]) we define

Ad(p)s == " ooy’

where ¢*: K[z1,...,2,] — Klz1,...,2,], f — f o, is the comorphism of ¢. It is
shown in [Kul92] that Ad: Aut(A") — Autp;.(Vec(A™)) is an isomorphism. We will
give a short proof in section 3.

Recall that the divergence of a vector field§ = ) . fia% is defined by Div § := 3, 2L

iaa:i‘

This allows to define the following subspaces of Vec(A"),
Vec’(A™) := {§ € Vec(A™) | Divd = 0} C Vec“(A") := {6 € Vec(A") | Divé € K},
which are Lie subalgebras, because Div[d, n] = 6(Divn) — n(Div §). We have

Vec®(A™) = Vec’(A") ® KOy where 0p := Z xzaa is the EULER field.
, i

The aim of this note is to prove the following result about the automorphism groups of
these Lie algebras.

Main Theorem. There are canonical isomorphisms
Aut(A™) 5 Autpi(Vec(A™)) = Autpie(Vec®(A™)) = Autpie(Vec?(A™)).

Remark 1.1. It is easy to see that the theorem holds for any field K of characteristic zero.
In fact, all the homomorphisms are defined over (Q, and are equivariant with respect to the
obvious actions of the Galois group I' = Gal(K/K).

As a consequence, we will get the next result (see Corollary 4.4) which goes back to
KULIKOV [Kul92, Theorem 4].

Corollary. If every injective endomorphism of the Lie algebra Vec(A") is an automor-

phism, then the Jacobian Conjecture holds in dimension n.

Remark 1.2. The Main Theorem has another interesting consequence. The group Aut(A")
is an infinite-dimensional algebraic group in the sense of SHAFAREVICH [Sha66, Sha81],
shortly an ind-group (cf. [KumO02]), and its Lie algebra is canonically isomorphic to
Vec(A™). It was recently shown by BELOV-KANEL and YU [BKY12] that every au-
tomorphism of Aut(A™) as an ind-group is inner. Using the Main Theorem above one
can give a new proof of this and extend it to the closed subgroup SAut(A") C Aut(A™)
of automorphisms with Jacobian determinant equal to 1. The details will appear in the
forthcoming paper [Kral4] where we also show that the maps in the Main Theorem are
isomorphisms of ind-groups.
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We add here a lemma which will be used later on.

Lemma 1.3. Vec(A") and Vec’(A™) are simple Lie algebras, and

Vec(A™) = [Vec®(A™), Vec®(A™)].

Proof. The formula [;2-, 3", fi:2] = 3=, 25i 2 shows that every nonzero ideal a of
J K3 J T
9

n ~ i) i) _ IR
Vec(A™) contains a nonzero element from } , K5, and [‘WaTj’ 3] = _52‘537@ implies

that 3, K 52- C a. Now we use [fa%j, ] = —%% to conclude that a = Vec(A"),

hence Vec(A™) is simple. (See also [Jor78, Theorem on page 446].)

The second statement is proved in a similar way and can be found in [Sha81, Lemma 3],
and from that the last claim follows immediately. OJ

2 Group actions and vector fields

If an algebraic group G acts on an affine variety X we obtain a canonical linear map
Lie G — Vec(X) defined in the usual way (cf. [Krall, I1.4.4]). For every A € Lie G the
associated vector field £ 4 on X is defined by

(€a)y = dp,(A) forx € X (2.1)

where p,: G — X, g — gz, is the orbit map in x € X. It is well-known that the linear
map A — &4 is a anti-homomorphism of Lie algebras, and that the kernel is equal to
the Lie algebra of the kernel of the action G — Aut(X). In particular, for any algebraic
subgroup G C Aut(A") we have a canonical injection Lie G < Vec(A"); we will denote
the image by L(G). Let us point out that a connected G C Aut(A"™) is determined by
L(G),i.e., if L(G) = L(H) for algebraic subgroups G, H C Aut(A"), then G° = H°.

Recall that the vector field 0 € Vec(A") is called locally nilpotent if the action of § on
Klzy,...,x,] is locally nilpotent, i.e., for any f € Klzy,...,x,| we have §™(f) = 0 if
m is large enough. Every such ¢ defines an action of the additive group K on A" such
that § = & where 1 € K = Lie Kt (see (2.1) above).

Lemma 2.1. Let u C Vec(A") be a finite dimensional commutative Lie subalgebra con-
sisting of locally nilpotent vector fields. Then there is a commutative unipotent algebraic
subgroup U C Aut(A") such that L(U) = . If centyeeany(u) = u, then U acts transi-
tively on A™.

Proof. 1tis clear that u = L(U) for a commutative unipotent subgroup U C Aut(A™). In
fact, choose a basis (01, . .., 0,,) if u and consider the corresponding actions p;: K+ —
Aut(A™). Since the associated vector fields ; commute, the same holds for the actions
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pi» SO that we get an action of (K T)™. It follows that the image U C Aut(A") is a
commutative unipotent subgroup with L(U) = u.

Assume that the action of U is not transitive. Then all orbits have dimension < n,
because orbits of unipotent groups acting on affine varieties are closed (see [Bor91,
Chap. I, Proposition 4.10]). But then there is a nonconstant U-invariant function f €
K|[zq,...,x,]. This implies that for every 0 € u the vector field f§ commutes with u and
thus belongs to centyec(sn) (1), contradicting the assumption. 0

Any 0 € Vec(A™) acts on the functions K[z, ..., z,] as a derivation, and on the Lie
algebra Vec(A") by the adjoint action, ad(d)u := [0, u| = d o p — po d. These two actions
are related as shown in the following lemma whose proof is obvious.

Lemma 2.2. Let 0, ;1 € Vec(A™) be two commuting vector fields and | € K[z, ..., ).
Then

ad(d)(fr) = o(f)n.

In particular, if ad(0) is locally nilpotent on Vec(A™), then 0 is locally nilpotent as a
vector field.

3 Proof of the Main Theorem, part I

We first give a proof of the following result which goes back to KULIKOV [Kul92, Proof
of Theorem 4]; see also [Bav13].

Theorem 3.1. The canonical map Ad: Aut(A™) — Autp;.(Vec(A™)) is an isomorphism.

Denote by Aff,, C Aut(A") the closed subgroup of affine transformations and by
S = (K*)" C Aff,, the subgroup of translations. Then

L(AfE,) = (:0,,,0u, | 1 <k <) D L(S) = (Or, ..., D) (3.1)

where 0,, := ;2. Put aff, := Lie Aff, and saff, = [aff,, aff,] = Lie SAff, where
SAff, = (Aff,, JAffn) C Aff,, is the commutator subgroup, i.e. the closed subgroup of
those affine transformations x +— gx + b where g € SL,,. The next lemma is certainly
known. For the convenience of the reader we indicated a short proof.

Lemma 3.2. The canonical homomorphisms
Aff, % Autpe(aff,) — Autgie(saff,)

are isomorphisms.
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Proof. 1t is clear that the two homomorphisms
Ad: Aff,, — Autpi(aff,) and res: Autp(aff,) — Autpie(saff,,)

are both injective. Thus it suffices to show that the composition res o Ad is surjective.

We write the elements of Aff,, in the form (v, g) withv € S = (KT)", g € GL,
where (v, g)x = gz + v for x € A™. It follows that (v, g)(w, h) = (v+ gw, gh). Similarly,
(a, A) € aff, means thata € s := Lie S = K", A € gl,,, and (a, A)x = Az + a. For the
adjoint representation of g € GL,, and of v € S on aff,, we find

Ad(g)(a, A) = (ga,gAg™") and Ad(v)(a, A) = (a — Av, A), (3.2)
and thus, for (b, B) € aff,,,
ad(B)(a, A) = (Ba,[B, A]) and ad(b)(a, A) = (a — Ab, A). (3.3)

Now let 0 be an automorphism of the Lie algebra saff,,. Then 6(s) = s since s is the
solvable radical of saff,,. Since g := 0|, € GL,, we can replace 8 by Ad(¢g~!) 0 and thus
assume, by (3.2), that @ is the identity on s. This implies that #(a, A) = (a + ((A),H(A))
where (: sl,, — sis a linear map and : sl,, — sl,, is a Lie algebra automorphism.

From (3.3) we get ad(b, B)(a,0) = ad(B)(a,0) = (Ba,0) for all a € s, hence

(Ba,0) = 0(Ba,0) = #(ad(B)(a,0)) =
=ad(0(B))(a,0) = ad(A(B))(a,0) = (0(B)a,0).

Thus §(B) = B, i.e. 0(a,A) = (a + ((A), A). Now an easy calculation shows that
(([A, B]) = Al(B)—B/{(A). This means that ¢ is a cocycle of sl,,. Since s[,, is semisimple,
¢ is a coboundary and thus /(A) = Awv for a suitable v € K. In view of (3.3) this implies
that # = Ad(—wv), and the claim follows. O

Proof of Theorem 3.1. 1t is clear that the homomorphism
Ad: Aut(A") — Autpie(Vec(A™))

is injective. So let § € Auty;.(Vec(A™)) be an arbitrary automorphism.

We have seen above that L(S) = (0,,,...,0,,) C Vec(A") where S C Aff, is
the subgroup of translations. Clearly, for every § € L(S) the adjoint action ad(J) on
Vec(A™) is locally nilpotent, and the same holds for any element from u := 6(L(S)).
It follows from Lemma 2.2 that u consists of locally nilpotent vector fields. Hence, by
Lemma 2.1, u = L(U) for a commutative unipotent subgroup U of dimension 7. More-
over, centyeean)(L(S)) = L(S), and so centyeany(u) = u which implies, again by
Lemma 2.1, that U acts transitively on A". Thus every orbit map U — A" is an isomor-
phism. It follows that there is an automorphism ¢ € Aut(A") such that pUp~! = S.
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In fact, fix a group isomorphism ¢): U — S and take the orbit maps pgs: S — A" and
pr: U = A™ at the origin 0 € A™. Then one easily sees that ¢ := g 0 1 o ug;' has the
property that p o w0 ! = ¢(u) forall u € U.

It follows that the automorphism ¢’ := Ad(p) 00 € Auty;.(Vec(A™)) sends L(S) iso-
morphically onto itself. Now the relations [0,,, z;0,,] = 9;;0,, imply that ¢'(L(Aff,))) =
L(Aff,,). By Lemma 3.2, there is an o € Aff,, such that Ad(«) o ' is the identity on
L(Aff,,). Hence, by the following lemma, Ad(a) o ' = id, because Ad(AE) acts by
multiplication with A on L(S), and so § = Ad(¢ ' o). O

Lemma 3.3. Let 0 be an injective endomorphism of one of the Lie algebras Vec(A™),
Vec®(A™) or Vec”(A™). If 0 is the identity on L(SL,), then = Ad(\E) for some \ € K*.

Proof. We consider the action of GL,, on Vec(A™). Denote by Vec(A™), the homoge-
neous vector fields of degree d, i.e.

VeC(A")d = @ K[Ih . ,l’n]d+1 axl ~ K[Qﬂ'l, . 7xn}d+1 X K™

Note that \E' € GL,, acts by scalar multiplication with A= on Vec(A™),. We have split
exact sequences of GL,,-modules
0 —— Vec®(A"); —— Vec(A")y —25 Klay,..., 20l —— 0 (3.4

where K[z1,...,7,]_1 = (0). Moreover, the SL,,-modules Vec’(A™)4 (for d > —1) and
K[zy,...,x,]q (for d > 0) are simple and pairwise nonisomorphic (see PIERI’s formula
[Pro07, Chap. 9, section 10.2]). The splitting of (3.4) is given by Klz1,...,2,]s0r C
Vec(A™)4 where Op = 10, + - -+ + 2,0, is the EULER field. In fact, the EULER field
is fixed under GL,, and Div(f0g) = (d + 1) f for f € K[x1,..., xp]a

Now let ¢ be an injective endomorphism of Vec(A™). If § is the identity on L(SL,,),
then 6 is SL,,-equivariant and thus acts with a scalar \; on Vec (A™)4 and with a scalar
pgon K[y, ..., 2,]40r , by SCHUR’s Lemma. The relations

e+1 d+1 _ d,.e+1 d+1,.e : :
[xj O,y i 0y,) = (d + Va0, — (e + 1)y a50,,, 1 # J,
show that A\, \q = A.4q, hence \y = \? for A := \;. The relations
(2605, 1905] = (d — €)xT 0

show that pi.jtq = fteqq for e # d which also implies that g = u® for ju := p;. Finally,
from the relation [0,,, 1205 = 220,,, we get A = pu, and so # = Ad(A~'id). This proves
the claim for Vec(A™). The two other cases follow along the same lines. [
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4 Etale Morphisms and Vector Fields

In the first section we defined the action of Aut(A”™) on the vector fields Vec(A™) by the
formula Ad(p)d := ¢* ! 0§ o *. In more geometric terms, considering & as a section of
the tangent bundle TA™ = A" x C" — A", one defines the pull-back of ¢ by

©*(0) == (dcp)_1 odop, ie.,p(d), = (dgoa)_l(ég,(a)) fora € A™.

Clearly, »*(§) = Ad(p')d. However, the second formula above shows the well-known
fact that the pull-back ¢*(J) of a vector field 0 is also defined for an étale morphism
@: A" — A" In the holomorphic setting this can be understood as lifting the correspond-

ing integral curves.

Proposition 4.1. Let o: A" — A" be an étale morphism. For any vector field § €
Vec(A") there is a vector field ¢*(0) € Vec(A™) defined by ¢*(8), = (dp)," dy(a) for
a € A" It is uniquely determined by

@ (0)"(f) = () for | € K[zy, ... xn]. 4.1)

The map ¢*: Vec(A™) — Vec(A™) is an injective homomorphism of Lie algebras satis-
fing o*(hd) = *(h)p*(d) for h € K[z1,...,x,|. Moreover, (no v)* = ¢* on*.

Proof. For a vector field 0: A" — T'A" and a € A" we have (dyp 0 §), = dp,(d,). Thus,
the equation (d),(d,) = (6 © ¥)s = dy(a) for the field ¢ has a unique solution, namely

ga = (dépa)_l(é@(a)),

which is well defined since dy, is invertible. The Jacobian determinant det(Jac(y)) is a
nonzero constant, and so the inverse matrix Jac(¢) ™! has entries in K[z, . .., z,]. There-
fore, the vector field ¢*(9) := 4 defined above is polynomial, and it satisfies the equation
(4.1). This proves the first part of the proposition and shows that (" is injective. Using
equation (4.1) we find

@ ((0102)f) = ©"(01(02f)) = ™ (01)" (02f) = (@™ (1) ¢"(d2)) " (),

hence (01, 8:]) = [*(81), 9" (82)}" (£), and 50 ({31, 82]) = 6" (61), " (62)]. More-

" (h)p*(f) = ¢*((hd) f) = @™ (R)p™(0f) = ¢* (M) ()" (f),

hence ¢*(hd) = ¢*(h)p*(9). This proves the second part of the proposition, and the last
claim is obvious. O
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Remark 4.2. In the notation of the proposition above let ¢ = (fi, ..., f,). Then we get
©*(0x:) = 0" (0) fi =2, gj:; ©*(6)x;. Hence, for 0 = 0,,, we obtain
f;
Ok, = o (
k Z 3%
-1
This shows that the matrix (w(azk)xj) ., isinvertible <¢*(azk)xj) Ly = Jacl). and
D> Js
that of
= o*( 4.2
Zax] :,) (4.2)

Proposition 4.3. Let po: A™ — A™ be an étale morphism. Then the pull-back map
©*: Vec(A") — Vec(A"™)
is an isomorphism if and only if ¢ is an automorphism.

Proof. Assume that o*: Vec(A™) — Vec(A™) is an isomorphism. Since ¢ is étale, the co-
morphism ¢*: K{z1,...,2,] = K[zy,...,x,]is injective, and we only have to show that
it is surjective. Proposition 4.1 implies that *(Vec(A")) = > . " (K[z1, ..., 2,])¢*(0s,),
and from equation (4.2) above, we get

Vec(A") = @, K[xq, ..., 2,]0z, = & K[z, ..., 20" (Ox,;).
Hence ¢*(Vec(A™)) = Vec(A") if and only if ¢*(K[z1,...,2,]) = K[zq,...,2z,). O

As a corollary of the two propositions above, we get the following result which is due
to KULIKOV [Kul92, Theorem 4].

Corollary 4.4. If every injective endomorphism of the Lie algebra Vec(A™) is an auto-

morphism, then the Jacobian Conjecture holds in dimension n.

Remark 4.5. The result of KULIKOV is stronger. He proves that every injective endomor-
phism of Vec(A") is induced by an étale map  which implies also the converse of the
statement above: If the Jacobian Conjecture holds in dimension n, then every injective

endomorphism of Vec(A™) is an automorphism.

We finish this section by showing that if the divergence of a vector field is a constant,
then it is invariant under an étale morphism. More generally, we have the following result.

Proposition 4.6. Let p: A™ — A™ be an étale morphism, and let § be a vector field. Then
Div ¢*(9) = ¢*(Div d). In particular, § € Vec®(A"™) if and only if ¢*(0) € Vec®(A™), and
in this case we have Div ¢*(0) = Div 0.
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Proof. Set o = (f1,..., fu): 6 = ., h;0,; and ©*(8) = 3_ h;0,,. Then, by (4.1),

fk P k=1,

hi(fiy- s [

Applying -2 By - to the left hand side we get the matrix

h i
( 0 k(flwo';fn)af‘) = H(f1,..., fn) - Jac(p)
‘ (k.5)

where H := Jac(hq, ..., h,). On the right hand side, we obtain similarly

Oh; 0fc | N, 0* fi
) =H-
(Z 8;1:] 83’,’Z - h 0:1:10:5]- k Jac + Z h Jac
g J)

Multiplying this matrix equation from the right with Jac(y) ™! we finally get

H(fi, ..., fa) = H—i—Zh Jac ) - Jac(p)
Now we take on both sides the traces. Using Lemma 4.7 below and the obvious equalities
Divd = tr H and Div § = tr H, we finally get
Divd = (Divé)(fi, ..., fn) = ©*(Divd).
The claim follows. O

Lemma 4.7. Let A be an n X n matrix whose entries a;;(t) are polynomials in t. Then

d d
A-Adj(A) | = —det A
<dt dj( )> o det

where Adj(A) is the adjoint matrix of A.

The proof is a nice exercise in linear algebra which we leave to the reader! It holds for
rational entries a;;(t) over any field K, and in case X' = R or C also for differentiable

entries a;;(t).

S Proof of the Main Theorem, part II

We have seen that the canonical map Ad: Aut(A") — Autp,(Vec(A™)) is an iso-
morphism (Theorem 3.1). It follows from Proposition 4.6 that every automorphism of
Vec(A™) induces an automorphism of Vec®(A™). Moreover, since

Vec(A™) = [Vec®(A™), Vec®(A™)]

(Lemma 1.3), we get a canonical map Auty;(Vec®(A")) — Auty;.(Vec’(A™)) which is
easily seen to be injective. Thus the main theorem follows from the next result.
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Theorem 5.1. The canonical map Ad: Aut(A") — Autpi(Vec’(A™)) is an isomor-
phism.

The proof needs some preparation. The next proposition is a reformulation of some
results from [Now86] and [LLD12]. For the convenience of the reader we will give a short
proof.

Proposition 5.2. Let 01,...,6, € Vec(A") be pairwise commuting and K -linearly inde-
pendent vector fields. Then the following statements are equivalent.

(i) There is an étale morphism @: A" — A" such that ©*(0,,) = ¢; for all i;
(ii) Vec(A™) = @, K[x1,. .., 2,0
(iii) There exist fi, ..., fn € K[x1,...,x,] such that §;(f;) = d;;;
(iv) 01, ...,0, do not have a common DARBOUX polynomial.

Recall that a common DARBOUX polynomial of the §; is a nonconstant polynomial f €
K[zy,...,x,] such that 0;(f) = h;f forsome h; € K[xy,...,x,],i=1,...,n.

Proof. (a) It follows from Remark 4.2 that (i) implies (ii) and (iii). Clearly, (ii) implies
(iv) since a common DARBOUX polynomial for the ¢; is also a common DARBOUX poly-
nomial for the d,, which does not exist.

(b) We now show that (ii) implies (i), hence (iii), using the following well-known fact.
If hy,..., h, € K[z1,...,x,] satisfy the conditions ghl = ghﬂ for all 7, j, then there is an
f € Klzy,...,z,) such that h; = % for all <.

By (ii) we have 0,, = >, hid) fori = 1,...,n. We claim that dh”“ = % for all
J

ox;
1, 7, k. In fact,
0= 0,,00, — 02,00, = Oh, Zh]kék Os, thkék
oh Oh;
= Z Jkék + Z h]karldk — (9$k6k — Z hlkazjdk =
k J k

Oh 3hz
< a;k — k>5k —+ (Z hjkhigégék — Z hikhjf5l(5k> =
% kt k.l

oh oh;
( 8; - k>5k + Z hikhje[0r, 6¢) =

Z
Ohji,  Ohy
; < e dz; >5k
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Hence h;;, = % for suitable f,..., f, € K[x1,...,x,]. Itis clear that the matrix (h;z)
is invertible. This implies that the morphism ¢ := (fi,..., f,): A" — A" is étale, and
O, = D g—f:ék, hence d; = ¢* (0, ), by equation (4.2) in Remark 4.2.

(c) Assume that (iii) holds. Setting d; = >, hix0,, and applying both sides to f;, we
see that the matrix (h;,) € M,,(K|z1, ..., z,)]) is invertible, hence (ii). Thus the first three
statements of the proposition are equivalent, and they imply (iv).

(d) Finally, assume that (iv) holds. Put §; = >, h;0,,. Since [0;,6;] = 0 we get
0;(hjr) = 6;j(hi) for all 4, j, k. Now an easy calculation shows that d;(det(h;;)) =
Div(dy) det(h;;), and so det(h;;) € K. If det(h;;) # 0, then (ii) follows.

If det(hy;) = 0, then rank(} ;. | K[zy,...,2,]0;) = r < n, and we can assume
that rank(>7_, K[xy,...,%,]d;) = . Choose a nontrivial relation "/ f;6; = 0 where
ged(fr, ..., frp1) = 1. Since 0 = §;(37F fid:) = S22 6,(f:)0; for any j we see that
0;(fi) € K[z1,...,2,]f;, and since the §; are K-linearly independent, at least one of the
fi is not a constant, hence a common DARBOUX polynomial, contradicting (iv). [

The second main ingredient for the proof is the following result.
Lemma 5.3. Let 01,5, € Vec’(A™) be commuting vector fields. Assume that
(a) 61 and 65 have a common DARBOUX polynomial f where 6;f # 0,1 =1, 2.
(b) Each &; acts locally nilpotently on Vec’(A™).

Then K[xy,...,x,]01 + K[xq,...,2,]00 C Vec(A") is a K[z1,...,x,|-submodule of
rank < 1.

Proof. We will show that there are nonzero polynomials py, po such that p;d; = p2ds. We
have 6;(f) = h;f where hy, hy # 0. Since §; and 0 commute we get 61 (hof) = do(h1 f),
and so d1hy = d2hy. Using the formula Div(gd) = dg + g Div(d), this implies that
§ := h10y — had; € Vec?(A™). Moreover, 6 f = 0, and so fd € Vec”(A"). Since

01, &) = [61, h102] — [01, hod1] = (01h1)02 — (81h2)d1,

we get (ad 51)k5 = 5f(h1)52 — 6’f(h2)51 and (ad 51)k(f5) = 5f(fh1)52 — 6f(fh2)51 NOW,
by assumption (b), there is a k > 0 such that (ad §;)*6 = (ad 6;)*(fd) = 0, hence

5f(h1)52 = 5f(h2)51 and (Slf(fhll)62 = (Slf(fh/Q)(Sl

Thus the claim follows except if 0Ffh; = 0Fthy = 6¥(fh1) = 6F(fha) = 0. We will
show that this leads to a contradiction. Since ¢, f = hy f, we get 5{““ f = 0. Choose r, s
minimal with 67h; = 0 and & f = 0. By assumption, r, s > 1, and we get 0]t 2(h, f) =
877 hy - 8571 f # 0. On the other hand, we have 6~ '(h, f) = 65f = 0, and we end up
with a contradiction, because s — 1 < r + s — 2. L]
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Now we can prove the Theorem.

Proof of Theorem 5.1. The case n = 1 is handled in Lemma 3.2, so we can assume that
n > 2. Let 0 be an automorphism of Vec’(A™) as a Lie algebra, and put §; := 6(9,,). Then
the vector fields d1, . . ., d,, are pairwise commuting and K -linearly independent. Since 0.,
acts locally nilpotently on Vec’(A™) the same holds for 6;. Moreover, the centralizer of the
6; in Vec’(A™) is the linear span of the d;, i.e. [3, 9;] = O for all 7 implies that § € €D, K 6.

In the following we will use vector fields with rational coefficients:
Ve (A™) := K (z1,..., %) @Kay,..0n] Vec(A™) = @ K(zy,...,2,)04.
i=1

(1) We first claim that the ; do not have a common DARBOUX polynomial. So assume
that there exists a nonconstant f € K[xy,...,x,]suchthatd;f = h, f for all i and suitable
hi € K[.’L‘l,...,l'n].

First assume that h; = 0, i.e. &,f = 0. Then f&, € Vec’(A"), and for any h €
Klzy,...,x,] and every ¢ we have [0;, hf01] = 6;(hf)01 = (6;(h) + hh;) fd1, and so

(ad &) (K[x1,...,2,]f61) C K[zy,. .., 2, f0; for all k > 0. 5.1
Setn := 671(f6,). Then there are k, . .., k,, € N such that
no := (ad 0, )" (ad 0,,)" - - - (ad 0, )" n € KO, ® --- ® K0, \ {0}.

Hence, 0(ny) = (ad dy)* (ad d2)*2 - - - (ad 6,)" (fd;) € K& & --- & K6, \ {0} which
contradicts (5.1), because f ¢ K.

We are left with the case where all ~; # 0. Then, Lemma 5.3 above implies that
> Kz, ..., 2,]6; € Vec(A™) has rank 1, i.e., there exist a 0 € Vec(A") and nonzero
rational functions r; € K(z1,...,x,) such that §; = ;0 fori = 1,..., n. We can assume
that 0 is minimal, i.e., that ¢ is not of the form ¢ ¢’ with a nonconstant polynomial q.
For every ;1 commuting with 0;, we get 0 = [u, ;] = [, 7:0] = p(r;)d + r;[u, 8], hence
[1,0] € K(x1,...,2,)0. Itis easy to see that

L= {€ € Vec(A") | [¢,6] € K(x1, ..., 2,)0}

is a Lie subalgebra of Vec(A™) which contains all elements commuting with one of the
8;. Since Vec”(A") is generated, as a Lie algebra, by elements commuting with one of
the 0,,, we see that §(Vec’(A")) = Vec’(A") is generated by the elements commuting
with one of the &;. Thus Vec’(A") C L, and so [Vec’(A"),8] C K(xy,...,x,)d. For
6 = 3, pi0y, we get [0,,,0] = 3, 99, = 56 for some s € K(x1,...,2,), hence

7 81‘)€
Opip) — OPj irs 4. 7. This impli 0P _
g P = FoDi for all pairs ¢, j. This implies that B =

0 in case p; # 0, i.e. % does
T
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not depend on . Since this holds for all k, we conclude that p; = ¢;p; for some ¢; € K,

hence § = } . ¢;0,;, because ¢ is minimal. In particular, [0;,,6] = 0 for all k. Now
we get [1¢0;,, 0] = —c0,, € K(x1,...,2,)0 for all k, ¢ which implies § = 0, hence a
contradiction.

(2) Now we use the implication (vi) = (i) of Proposition 5.2 to see that there is an
étale morphism ¢: A" — A™ with ; = ¢*(0,,) for all 7. Then the composition ¢’ :=
0~ o p*: Vec’(A™) — Vec’(A™) is an injective homomorphism of Lie algebras (Propo-
sition 4.1) and 6'(9,,) = 0,,. Hence, Lemma 5.4 below implies that ¢’ = Ad(s) = (s7!)*
where s € Aut(A") is a translation, hence 6 = (¢ o s)*. Now Proposition 4.3 implies that
Y := o s is an automorphism of A", and so # = Ad(¢y)~!) as claimed. ]

Lemma 5.4. Let 0 be an injective endomorphism of Vec’(A") such that 0(0,,) = 0,,
for all i. Then § = Ad(s) where s: A™ = A" is a translation. In particular;, 0 is an

automorphism.

Proof. We know that ) . K0,, = L(S) where S C Aff,, are the translations. Moreover,
L(Aff,) is the normalizer of L(S) in the Lie algebra Vec(A"). Hence 0(L(SAff,)) =
L(SAff,), and so there is an affine transformation g such that Ad(g)|.saf,) = 0]L(saf,)»
by Lemma 3.2. Since Ad(g) is the identity on L(S) we see that ¢ is a translation. It
follows that Ad(g™!) o 6 is the identity on L(SL,), hence Ad(g~') o § = Ad(\E) for
some A € K*, by Lemma 3.3. But A\ = 1, because 0 is the identity on L(S), and so
0 = Ad(g). O

Acknowledgments. The authors are partially supported by the SNF (Schweizerischer Nationalfonds).
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LIE SUBALGEBRAS OF VECTOR FIELDS ON AFFINE 2-SPACE
AND THE JACOBIAN CONJECTURE

ANDRIY REGETA

ABSTRACT. We study Lie subalgebras L of the vector fields Vec®(A2) of affine
2-space A2 of constant divergence, and we classify those L which are isomorphic
to the Lie algebra affy of the group Aff3(K) of affine transformations of A2.
We then show that the following statements are equivalent:

(a) The Jacobian Conjecture holds in dimension 2;

(b) All Lie subalgebras L C Vec®(A?) isomorphic to aff, are conjugate under

Aut(A2);

(c) All Lie subalgebras L C Vec®(A2?) isomorphic to aff, are algebraic.
Finally, we use these results to show that the automorphism groups of the Lie
algebras Vec(A2), Vec?(A?) and Vec®(A?) are all isomorphic to Aut(A?).

1. INTRODUCTION

Let K be an algebraically closed field of characteristic zero. It is a well-known
consequence of the amalgamated product structure of Aut(A?) that every reductive
subgroup G C Aut(A?) is conjugate to a subgroup of GLo(C) C Aut(A2), i.e.
there is a 1 € Aut(A?) such that »Gy~! C GLy(C) ([Kam79], cf. [Kra96]). The
“Linearization Problem” asks whether the same holds for Aut(A"). It was shown
by Schwarz in [Sch89] that this is not the case in dimensions n > 4 (cf. [Kno91]).

In this paper we consider the analogue of the Linearization Problem for Lie
algebras. It is known that the Lie algebra Lie(Aut(A?)) of the ind-group Aut(A?)
is canonically isomorphic to the Lie algebra Vec®(A?) of vector fields of constant
divergence ([Sha66, Sha81], cf. [Kum02]). We will see that the Lie subalgebra

L := K(2?0, — 22yd,) ® K (20, — y9,) ® K9, C Vec®(A?)

where 9, := 8% and 0y := 8%7 is isomorphic to sly, but not conjugate to the

standard sl C Vec®(A?) under Aut(A?) (Remark 4.3). However, for some other
Lie subalgebras of Vec®(A?), the situation is different. Let Affa(K) C Aut(A?) be
the group of affine transformations and SAffy(K) C Aff3(K) the subgroup of affine
transformations with determinant equal to 1, and denote by aff,, respectively saff,
their Lie algebras which we consider as subalgebras of Vec®(A?). The first result
we prove is the following (see Proposition 3.9). For f € Klz,y] we set Dy =
fo0y — [y0n € Vec®(A?).

Theorem A. Let L C Vec®(A?) be a Lie subalgebra isomorphic to affy. Then there
is an étale map @: A% — A? such that L = ¢*(aff,). More precisely, if (D¢, Dy) is
a basis of the solvable radical of [L, L], then

L = <Df,Dg,Df2,Dgz,ng,ng>,

Date: February 2014.
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and one can take ¢ = (f, g).

The analogous statements hold for Lie subalgebras isomorphic to saff,. As a
consequence of this classification we obtain the next result (see Theorem 4.1 and
Corollary 4.4). Recall that a Lie subalgebra of Vec(A?) is algebraic if it acts locally
finitely on Vec(A?).

Theorem B. The following statements are equivalent:

(i) The Jacobian Conjecture holds in dimension 2;
(ii) All Lie subalgebras L C Vec®(A?) isomorphic to aff, are conjugate under
Aut(A?);
(iii) All Lie subalgebras L C Vec®(A?) isomorphic to saff, are conjugate under
Aut(A?);
(iv) All Lie subalgebras L C Vec®(A?) isomorphic to aff, are algebraic;
(v) All Lie subalgebras L C Vec®(A?) isomorphic to saffy are algebraic.

Finally, as a consequence of the theorem above, we can determine the automor-
phism groups of the Lie algebras of vector fields (Theorem 4.5).
Theorem C. There are canonical isomorphisms
Aut(A?) =5 Autpa(Vec(A?)) = Autpa(Vec®(A%)) =5 Autya(Vec® (A?)).
(Here Vec’(A?) denotes the vector fields with zero divergence, see section 2).

Acknowledgement: The author would like to thank his thesis advisor HANSPETER
KRAFT for constant support and help during writing this paper.

2. THE POISSON ALGEBRA

Definitions. Let K be an algebraically closed field of characteristic zero and let
P be the Poisson algebra, i.e., the Lie algebra with underlying vector space K|z, y]
and with Lie bracket {f,g} = fagy — fygz for f,g € P. If Jac(f,g) denotes the
Jacobian matriz and j(f, g) the Jacobian determinant,

sacr.g) = [F I 7.0) = densact ),
9z Gy
then {f,g} = j(f,g). Denote by Vec(A?) the polynomial vector fields on affine
2-space A% = K2 i.e. the derivations of K[z, y]:
Vec(A?) := {pd, + q0y | p,q € K[w,y]} = Der(K[z,y]).
There is a canonical homomorphism of Lie algebras
p: P — Vec(A?), hs Dy, = h,0, — hy0y,

with kernel ker p = K.

The next lemma lists some properties of the Lie algebra P. These results are

essentially known, see e.g. [NN88|]. If L is any Lie algebra and X C L a subset, we
define the centralizer of X by

centr(X):={z€L|[z,2] =0forall z € X},
and we shortly write cent(L) for the center of L.

Lemma 2.1. (a) The center of P consists exactly of the constants K C P.
(b) If f,g € P are such that {f,g} =0, then f,g € K|[h] for some h € K[x,y].
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(¢) If f,g € P such that {f,g} # 0, then f,g are algebraically independent in
K[z,y], and centp(f) Ncentp(g) = K.
(d) P is generated, as a Lie algebra, by {x,x3,y*}.
Proof. (a) is easy and left to the reader.
(b) Consider the morphism ¢ = (f,g): A2 — A% Then C := p(A2) C A% is an
irreducible rational curve, and we have a factorization
h

@: A? Al —1 5 ¢ c A?
where 7 is the normalization of C. It follows that f, g € K[h].

(c) Tt is clear that f,g are algebraically independent, i.e. tdegx K(f,g9) = 2.
Equivalently, K (z,y)/K(f,g) is a finite algebraic extension. Now assume that
{h, f} = {h,g} = 0. Then the derivation D}, vanishes on K[f, g], hence on K|z, y].
Thus D, =0 and so h € K.

(d) Denote by P; := K|[z,y|q the homogeneous part of degree d. Let L C P be
the Lie subalgebra generated by {z, 23, y?}. We first use the equations

{z, v} =1, {z,v*} =2y, {°,y} =327, {a® 9%} = day, {2°,y°} =627y
to show that K@ P, @ P, C L and that 22y € L. Now the claim follows by induction
from the relations

+1 s+1

{z" 2%y} = na"! and {z"y*, 9} = 2ra" "y

0

Divergence. The next lemma should also be known. Recall that the divergence
Div D of a vector field D = pd, + qd, € Vec(A?) is defined by Div D := p, + ¢, €
K[z, y]. Define

Vec?(A?) := {D € Vec(A?) | Div D = 0} C Vec®(A?) := {D € Vec(A?) | DivD € K}.

The Lie algebra homomorphism p: P — Vec(A?), f — Dy, has its image in
Vec?(A?), because Div Dy = 0.

Lemma 2.2. Let D be a non-trivial derivation of K|x,y].

(a) The kernel K[x,y|P is either K or K|[f] for some f € K[z,y].
(b) If DivD = 0, then D = Dy, for some h € K[z,y]. In particular, u(P) =
Vec?(A2?).
Now assume that D = Dy for some non-constant f € Kz,y| and that D(g) = 1
for some g € K|z, y].
(¢) Then K[z,y|P = K[f].
(d) If D is locally nilpotent, then K[z,y] = K[f,g].

Proof. (a) See [NN88] Theorem 2.8.

(b) Let D = f0, + g0y, then DivD = f, + g, = 0 implies that there exists
h € K[z,y] such that f = h,, g = —h,.

(c) It is obvious that ker(D) D K|[f], hence, by (a), one has ker(D) = K[h] D
K[f]. Thus f = F(h) for some F' € K[t] and then D¢(g) = Dpn)(9) = F'(h)Dn(g) =
1 which implies that F' is linear.

(d) Let G be an affine algebraic group, X an affine variety and ¢p: X — G a
G-equivariant retraction. Then one has O(X) = ¢*(O(G)) ® O(X)C. In our case
we get K[z,y] = O(A?) = O(G) ® O(A?)Y = K|g] ® K|[f]. O
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Automorphisms of the Poisson algebra. Denote by Auty4(P) the group of
Lie algebra automorphisms of P. There is a canonical homomorphism

p: Autpa(P) — K*, ¢ o(1),

which has a section s: K* — Autya(P) given by s(t)|x(z,y], 1= t'~"idk]s,), where
Klz,y], C K[z,y] denotes the subspace of homogeneous polynomials of degree n.
Thus Autza(P) is a semidirect product Autpa(P) = SAutpa(P) x K* where

SAutpa(P) :=kerp = {Oé € Autpa(P) | a(l) = 1}.

Lemma 2.3. Every automorphism o € Autpa(P) is determined by (1), a(x) and
a(y), and then K[z,y] = K|a(x), a(y)].

Proof. Replacing a by the composition o s(a(1)™!) we can assume that a(1) = 1.

We will show that a(z™) = a(z)™ and a(y™) = a(y)™ for all n > 0. Then the
first claim follows from Lemma 2.1(d).

By induction, we can assume that a(z?) = a(x)? for j < n. We have {a",y} =
nz" 1 and so {a(z"),a(y)} = na(z" ') = na(z)"~!. On the other hand, we
get {a(z)", a(y)} = na(z)" " Ha(x),a(y)} = na(z)" !, hence the difference h :=
a(z™) — a(x)" belongs to the kernel of the derivation Dy : f = {f, a(y)}. Since
D,y) is locally nilpotent, we get from Lemma 2.2(c)—(d) that ker Dy () = K[a(y)]
and that K[a(x),a(y)] = K|z, y]. This already proves the second claim and shows
that h is a polynomial in a(y).

Since {a(z"), a(z)} = a({z", z}) = 0 and {a(z)", a(z)} = na(z)" Ha(x), a(z)}
we get {h,a(x)} = 0 which implies that h € K.

In the same way, using {z, zy} = = and {y, zy} = —y, we find a(zy) —a(z)a(y) €
K. Hence

na(z") = {a(z"), a(ry)} = {a(x)", a(r)aly)} = na(x)",
and so a(z") = a(x)™. By symmetry, we also get a(y™) = a(y)™. O
Automorphisms of affine 2-space. Denote by Aut(K|[z,y]) the group of K-
algebra automorphisms of K[z,y]. We have a canonical identification Aut(A?) =
Aut(K|[z,y])°P given by ¢ — ¢*. For p € Aut(K|[z,y]) we will use the notation
p = (f,g) in case p(z) = f and p(y) = g, which implies that K[z, y] = K[f, g]. Note
that the Jacobian determinant defines a homomorphism

jo Aut(Klz,y]) = K°5 p = j(p) = i(p(x), p(y))
whose kernel is denoted by SAut(K|[z,y]).
We can consider Aut(K|z,y]) and Auty4(P) as subgroups of the K-linear auto-
morphisms GL(K [z, y]).

Lemma 2.4. As subgroups of GL(K[z,y]) we have SAutp4(P) = SAut(K|x,y]).
Proof. (a) Let u be an endomorphism of K[z, y] and put Jac(u) := Jac(u(x), u(y)).
For any f,g € K[z,y] we have Jac(u(f), u(g)) = pn(Jac(f, g)) Jac(u), because
sot0) = 5L o), ) 252+ S o), i 22
~u(GhH By Sh2W

It follows that {u(f),un(9)} = w({f,9})j(n). This shows that SAut(K[z,y]) C
SAutpa(P).
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(b) Now let @ € SAut4(P). Then j(a(z), a(y)) = {a(x),a(y)} = a(1) = 1 and,

by Lemma 2.3, K[a(z),a(y)] = Klz,y]. Hence, we can define an automorphism
p € SAut(Klz,y]) by p(x) := a(x) and p(y) := aly). From (a) we see that p €
SAutz4(P), and from Lemma 2.3 we get o = p, hence a € SAut(K [z, y]). O

Remark 2.5. The first part of the proof above shows the following. If f,g € P are
such that {f,g} = 1, then the K-algebra homomorphism defined by = — f and
y +— ¢ is an injective homomorphism of P as a Lie algebra. (Injectivity follows,
because f, g are algebraically independent.)

Lie subalgebras of P. The subspace
P =KoPoP=KoKroKy® Ke*® Key® Ky* C P

is a Lie subalgebra. This can be deduced from the following Lie brackets which we
note here for later use.

(1) {2%, ay} = 227, {2%, 9%} = day, {v*, 2y} = —2";
(2) {z%,2} =0, {zy,2} = -z, {y*,2} = 2y,

(3) {z%,y} =22, {wy,y} =v, {¥*,y} =0;

(4) {z,y} =1

Moreover, P, = Kz? & Kxy ® Ky? is a Lie subalgebra of P<5 isomorphic to sly,
and P; = Kx & Ky is the two-dimensional simple P>-module.
From Remark 2.5 we get the following lemma.

Lemma 2.6. Let f,g € K|x,y] such that {f,g} = 1. Then (1, f, g, f%, fg,9°) C P
is a Lie subalgebra isomorphic to P<a. An isomorphism is induced from the K-
algebra homomorphism P — P defined by x +— f,y — g.

Definition 2.7. For f,g € K|z, y] such that {f, g} € K* we put

Ppg:=(1,f,9,.f* fg.9°) C P.
We have just seen that this is a Lie algebra isomorphic to P<s. Clearly, Py 4 = Py, 4,
if (1, f,9) = (1, f1,91). Denoting by tad L the solvable radical of the Lie algebra L
we get
tad Py g = (1, f,g) and Pyg/vad Py 4~ sly.

Proposition 2.8. Let Q C P be a Lie subalgebra isomorphic to P<g. Then K C Q,
and Q = Pyg4 for every pair f,g € L such that (1, f,g) = tad Q. In particular,
{f,g9} € K*.
Proof. We first show that cent(Q) = K. In fact, @ contains elements f, g such that
{f,g} #0.If h € cent(Q), then h € centp(f) Ncentp(g) = K, by Lemma 2.1(c).

Now choose an isomorphism 6: P<s — Q. Then 6(K) = K, and replacing 6 by
0o s(t) with a suitable t € K* we can assume that ¢(1) = 1. Setting f := 0(x), g :=
0(y) we get {f,g} =1, and putting fo := 0(2?), f1 := 0(xy), fo := 0(y*) we find

{f1, f} = 0wy, 2} = 0(—x) = —f ={fg. [}
Similarly, {f1,9} = {fg,9}, hence fg = f1 + ¢ € @, by Lemma 2.1(c). Next we
have
{fo, /Y =0 and {fo,g} = 0({z*,y}) = 6(22) = 2f = {f*, 9}

Hence f? = fo + d, and thus f? € Q. A similar calculation shows that g* € Q, so
that we finally get Q = Py 4. O
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Characterization of P<;. The following lemma gives a characterization of the
Lie algebras isomorphic to P<s.

Lemma 2.9. Let Q be a Lie algebra containing a subalgebra Qg isomorphic to sls.
Assume that

(a) Q=Qo®Va® Vi as a Qo-module where the V; are simple of dimension 1,
(b) Vi is the center of @, and
(c) [Va, V2] =W1.

Then @ is isomorphic to P<s.

Proof. Choosing an isomorphism of P, = (2% 2y,%?) with Qo we find a basis
(ag, a1, az2) of Qp with relations

(1) [ag, a1] = 2ag, [ag,a2] = 4a1, [az,a1] = —2as

(see (1) above). Since Vs is a simple two-dimensional Qo-module and Kz @ Ky a
simple two-dimensional Py-module we can find a basis (b, ¢) of V4 such that

(2" [ag,b] =0, [a1,b] = —b, [az,b] = —2¢,

(3" [ag, c] = 2b, [a1,d] =¢, [az,c] =0

(see (2) and (3) above). Finally, the last assumption (c) implies that
(4 d:=1[b,c] #0, hence V; = Kd.

Comparing the relations (1)—(4) with (1")—(4") we see that the linear map P<o — Q
given by 22 — ag, 2y — a1, y2 — a9, T — b, y — ¢, 1 — d is a Lie algebra
isomorphism. O

3. VECTOR FIELDS ON AFFINE 2-SPACE

The action of Aut(A?) on vector fields. The group Aut(A2) acts on the vector
fields Vec(A?). If ¢ € Aut(A?) and if the vector fields Vec(A?) are regarded as
sections £: A2 — TA? of the tangent bundle, then ¢*(€) := (dp) ! o € o . Writing
§=p0z + qdy and ¢ = (f, g), we get

* 1 * * * *
() = ) ((9u™ (P) = f4#" (@) O + (—92" (P) + f2p" () Dy) -

In particular,

“(0.) = and 0" (8.) = 1 (_

In fact, for every u = ( b) € A% we have dp, 00*(£)y = Epuy- If *(§) = PO, + G0y,
this means that

v 5] el ]

ga(u)  gy(u)] [G(u) q(e(u)

[ﬁ(U)}_’ 1 [gy(U) - UHP(@(H))]

Hence

q(u)
and the claim follows.
Remark 3.1. If £ € Vec(A?) is considered as a derivation D of K[z,y], and if

a = p* € Aut(K[z,y]), then the derivation corresponding to ¢*(€) is given by
ayD=aoDoa!
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Remark 3.2. If p: A2 — A% is étale, i.e. j(p) € K*, then the pull-back ©*(£) is well-
defined for every vector field £: A% — T'A2. Tt satisfies the equation dpog*(£) = Eop
and it is given by the formula (). In terms of derivations, this corresponds to the
well-known fact that for an étale extension a: A — B every derivation D of A
extends uniquely to a derivation of «, (D) of B satisfying a,(D)oa =« o D.

It is not difficult to see that the map

"1 Vec(A?) = Vec(A?), € ¢*(¢),

is an injective homomorphism of Lie algebras. In fact, if o = ¢* € End(K|[z,y])
and D the derivation of K[z,y] that corresponds to &, then we find

ax([D1,D3])oa = «ao[Dy,Ds]=aoDyoDy—aoDyoDy
= ax(D1)oaoDy— a.(Ds)oao D
= au(D1)oa.(Dg)oa— a,(Ds)oas(D1)oa
= [a(Dr), au(D2)] o,

hence the claim.

Recall that Vec®(A?%) C Vec(A?) are the vector fields D with Div D € K. Clearly,
the divergence Div: Vec®(A?) — K is a character with kernel Vec”(A?), and we
have the decomposition

Vec®(A?) = Vec’(A?) @ KE where E :=xd, +y0, is the Euler field.

Lemma 3.3. If ¢: A*> — A? is étale, then ¢*(Dp) = j(¢) ' Dy« (). Moreover,
Div(¢*(E)) = 2, and so ¢*(Vec’(A?)) C Vec®(A2) and p*(Vec®(A?)) C Vec(A?).
In particular, the homomorphism p: P — Vec(A?) is equivariant with respect to
the group SAut(K|[z,y]) = SAutp.(P).

Proof. Put a := ¢* € End(K|[x,y]). We have a(Dy) o « = aw o Dy, hence
a(Dn)(a(f)) = a(Dn(f)) = ali(h, £)) = j(a) " i(a(h), a(f)) =
= j(a) " Damy(a(f)).

From formula (x) we get «(F) = ﬁ ((gyf — fy9)0s + (—gzf + f29)0,) which im-
plies that Diva(FE) = 2. O

o

Remark 3.4. Let p: A2 — A? be étale. If p*: Vec?(A?) — Vec’(A?) is an iso-
morphism, then so is . In fact, p*(De.p) = Dy-p) for ¢ := j(¢) € K*, show-
ing that every f € K[x,y] is of the form ¢*(h) up to a constant. It follows that
©*: Klx,y] = K[z, y] is surjective, hence an isomorphism.

Remark 3.5. The lemma above implies that we have canononical homomorphisms

Aut(K[z,y]) — Autpa(Vec(A?)),
Aut(K|[z,y]) — Autpa(Vec®(A?)),
Aut(K[z, y]) — Autpa(Vec®(A2)).

We will see in Theorem 4.5 that these are all isomorphisms.
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Lie subalgebras of Vec(A2). Let Aff(A%) denote the group of affine transforma-
tions of A% z+— Az + b, where A € GLo(K) and b € K?. The determinant defines
a character det: Aff(A?) — K* whose kernel will be denoted by SAff(A?). For the
corresponding Lie algebras we write saff, := Lie SAff(A?) C aff, := Lie Aff(A?).
There is a canonical embedding aff, C Vec(A?) which identifies aff, with the Lie
subalgebra

(O, Oy, ©0y + YOy, 20y — YOy, 10y, yOy) C Vec(A?),
and saff, with

1(Pyy) = (D, 0y, 20y — Y0y, 20y, y0,) C Vec?(A?).
Note that the Euler field E = 20, + y0y € aff, is determined by the condition that

E acts trivially on sl and that [E, D] = —D for D € tad(saffy) = K0, © K0,. We
also remark that the centralizer of saff, in Vec(A?) is trivial:

centVec(AZ)(gaﬁ2> = (O)

In fact, centyee(az)({0s,0y)} = K8, ® K0,, and (K0, ® K9,)*2 = (0).
Let o = (f,g): A2 — A? be étale, and assume, for simplicity, that j(f,g) = 1.
From formula (x) we get

¢ (0) = 9y0z — 920y = =Dy, ¢"(9y) = —fy0s + [0y = Dy,
¢*(28,) = [Df = §Dg2,  ¢*(yds) = —gDyg = =3 Dy,
" (®0z) = —fDg, ¢*(ydy) = gDy, " (20, —ydy) = —Dyy.
This shows that for an étale map ¢ = (f, g) we obtain
¢*(affy) = (Dy, Dg, Dy2, Dg2, fDg, gDy),
¢*(saffy) = (D, Dg, Dy2, Dg2, Dyg) = 11( Py )

Proposition 3.6. Let L C Vec®(A?) be a Lie subalgebra isomorphic to saffy. Then
there is an étale map ¢ such that L = ¢*(saff,). More precisely, if (D, Dy) is a
basis of vad(L), then L = (Dy, Dy, Ds2, Dy2, Dyg), and one can take ¢ = (f,g).

Proof. We first remark that L C Vec®(A?), because saff, has no non-trivial charac-
ter. By Proposition 2.8 it suffices to show that @ := p~1(L) C P is isomorphic to
P<5. We fix a decomposition L = Ly & vad(L) where Ly =~ sly. It is clear that the
Lie subalgebra Q := puY(Lo) C P contains a copy of sly, i.e. Q = Qo ® K where
Qo ~ sls. Hence, as a @Qg-module, we get @ = Qo & Vo & K where V5 is a two-
dimensional irreducible Qg-module which is isomorphically mapped onto tad(L)
under p. Since {tad(L),tad(L)} = (0) we have {V3, V2} C K. Now the claim follows
from Lemma 2.9 if we show that {Va, Va} # (0).

Assume that {V5,V2} = (0). Choose a sly-triple (eg, ho, fo) in Qo and a basis
(f,g) of V4 such that {eg, f} = ¢ and {eg,g} = 0. Since {f,g} = 0 we get from
Lemma 2.1(b) that f,g € KJh| for some h € K[x,y], i.e. f = p(h) and g = ¢(h)
for some polynomials p,q € K[t]. But then 0 = {eg, g} = {eo,q(h)} = ¢'(h){eo, h}
and so {eg, h} = 0. This implies that g = {eg, f} = {eo,p(h)} = p'(h){eo, h} =0, a
contradiction. O

Remark 3.7. The above description of the Lie subalgebras L isomorphic to saffy
also gives a Levi decomposition of L. In fact, (Dy, D) is a basis of tad(L) and
Ly := (Dy2,Dg2, Dyg4) is a subalgebra isomorphic to sly. The following corollary
shows that every Levi decomposition is obtained in this way.
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Corollary 3.8. Let L C Vec®(A?) be a Lie subalgebra isomorphic to saffy, and
let L =vad(L) @ Lo be a Levi decomposition. Then there exist f,g € Klx,y] such
that vad(L) = (Dy, Dy) and Lo = (D2, Dyg, Dy2). Moreover, if L' C Vec®(A?) is
another Lie subalgebra isomorphic to saffy and if L' D Loy, then L' = L.

Proof. We can assume that L = saffy, = (Dy, Dy, Dy2,D,2, Dyy). Then every Lie
subalgebra Lo C L isomorphic to sly is the image of sly = (D,2, D,2, D,,) under
conjugation with an element « of the solvable radical R of SAffs. As a subgroup of
Aut(K|[z,y]) the elements of R are the translations a = (z + a,y + b), and we get
tad(L) = (Dyya, Dy+b> and a(sly) = <D(z+a)2, D(erb)z, D(r+a)(y+b> as claimed.
For the last statement, we can assume that L' = (Dy, Dy, Dy2, Dg2, Dyg) such
that (Dy2,Dg2, Dyg) = sly. This implies that (f?,¢2, fg,1) = (z%,y?, 2y,1), and
the claim follows. O

Proposition 3.9. Let M C Vec®(A?) be a Lie subalgebra isomorphic to affy. Then
there is an étale map ¢ such that M = ¢*(affy). More precisely, if (Dy, Dgy) is a
basis of vad([M, M]), then M = (D, Dy, fD¢,gDgy, gDy, fDy), and one can take

v=(f9)-

Proof. The subalgebra M’ := [M, M] is isomorphic to saff, hence, by Proposi-
tion 3.6, M’ = ¢*(saff,) for an étale map ¢ = (f,g) where we can assume that
jla) = 1. We want to show that ¢*(affy) = M. Consider the decomposition
M =J & My e KD where J = vad(M’), My is isomorphic to sly, and D is the
Euler-element acting trivially on My. We have ¢*(affy) = M’ & KE where E is
the image of the Euler element of aff,. Since Vec®(A?) = Vec’(A2?) @ KD’ for any
D’ € Vec®(A?) with Div D’ # 0 we can write D = aE + F with some a € K and
F € Vec’(A?), i.e. F = Dy, for some h € K|z,y].

By construction, F' = D — aF commutes with My. Since Mo = (D2, D2, Dyg)
we get {h, f?} = ¢ where ¢ € K. Thus ¢ = {h, f?} = 2f{h, f} which implies that
{h, f} = 0. Similarly, we find {h,g} = 0, hence h is in the center of p=1(M’) =
P4 C P. Thus, by Lemma 2.1(c), h € K and so Dj, = 0 which implies D = oFE. O

4. VECTOR FIELDS AND THE JACOBIAN CONJECTURE

The Jacobian Conjecture. Recall that the Jacobian Conjecture in dimension n
says that an étale morphism p: A™ — A" is an isomorphism.

Theorem 4.1. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(if) All Lie subalgebras of P isomorphic to P<o are equivalent under Autp4(P).
iii) All Lie subalgebras of Vec®(A?) isomorphic to saff, are conjugate under
2
Aut(A?).
iv) All Lie subalgebras of Vec®(A2) isomorphic to aff, are conjugate under
2
Aut(A?).

For the proof we need to compare the automorphisms of P with those of the
image u(P) = Vec’(A?) ~ P/K. Since K is the center P, we have a canonical
homomorphism F': Autpa(P) = Autpa(P/K), ¢ — @.

Lemma 4.2. The map F: Autpo(P) = Autpa(P/K) is an isomorphism.
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Proof. If ¢ € ker F, then ¢(z) = x+a, p(y) = y+b where a,b € K. By Lemma 2.4,
the K-algebra automorphism « of K|z,y] defined by z — z+a, y — y+ b is a Lie
algebra automorphism of P, and ¢ = a by Lemma 2.3. But then p(2?) = (z+a)? =
22 4 2ax + a?, and so @(z2) = 22 + 2a%. Therefore, a = 0, and similarly we get
b =0, hence p =idp.

Put P := P/K and let p: P = P be a Lie algebra automorphism. Then L :=
p(P<3) C P is a Lie subalgebra isomorphic to saff, and thus L := p~ (L) is
a Lie subalgebra of P isomorphic to P<s, by Proposition 2.8. Choose f,g € L
such that f = p(Z) and g = p(y). Then (1, f,g) = vad(L), and so L = Py ,, by
Proposition 2.8. It follows that the map pu: P — P defined by x — f,y — ¢
is an injective endomorphism of P (Remark 2.5), and that i = p. Since p is an
isomorphism the same holds for pu. d

Proof of Theorem 4.1. (i)=-(ii): If L C P is isomorphic to P<o, then L = Py 4 for
some f,g € KJ[z,y| such that {f, g} =1 (Proposition 2.8). By (i) we get K[z,y] =
K|f,g], and so the endomorphism z — f,y — g of K|z, y] is an isomorphism of P,
mapping P<s to L.

(ii)=(iii): If L C Vec®(A?) is a Lie subalgebra isomorphic to saff,, then L =
w(Py,q) for some f,g € Klx,y], by Proposition 3.6. By (ii), P, = a.(P<2) for
some o € SAutpa(P) = SAut(K[z,y]). Hence L = p(a.(P<2)) = a(saff,), by
Lemma 3.3.

(iii)=-(iv): Let M C Vec®(A?%) be a Lie subalgebra isomorphic to aff,, and set
M' := [M, M] =~ saffy. By (iii) there is an automorphism ¢ € Aut(A2) such that
M’ = p*(saff,). It follows that ¢*(aff,) = M since M is determined by tad(M’) as
a Lie subalgebra, by Proposition 3.9.

(iv)=(i): Let ¢ := (f,g): A2 — A? be an étale morphism. Then M := ¢*(affy) C
Vec®(A?) is a Lie subalgebra isomorphic to aff, (see Lemma 3.3). By assumption
(iv), there is an automorphism ¢ € Aut(A?) such that *(affy) = M. It follows
that ©~1 o ¢ is an étale morphism which induces an automorphism of aff,, hence
of saff,, and thus of vad(saff,) = KO, ® K0,. This implies that 1)~ o ¢ is an
automorphism, and the claim follows. O

Remark 4.3. Tt is not true that the Lie subalgebras of P or of Vec®(A?) isomorphic
to sly are equivalent, respectively conjugate. This can be seen from the example
S = Kx?y ® Kxy ® Ky C P which is isomorphic to sly, but not equivalent to
Kz? ® Koy ® Ky? under Autz4(P). In fact, the element 2%y does not act locally
finitely on P.

Algebraic Lie algebras. If an algebraic group G acts on an affine variety X we
get a canonical anti-homomorphism of Lie algebras ®: Lie G — Vec(X) defined in
the usual way:

LieG 2> A €4 with (€4), := dp.(A) for x € X,

where ¢, : G — X is the orbit map g — gz. A Lie algebra L C Vec(X) is called
algebraic if L is contained in ®(Lie G) for some action of an algebraic group G on
X. It is shown in [CDO3] that L is algebraic if and only if L acts locally finitely on
Vec(X). With this result we get the following consequence of our Theorem 1.

Corollary 4.4. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(ii) All Lie subalgebras of Vec®(A?) isomorphic to saff, are algebraic.
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(iii) All Lie subalgebras of Vec®(A?) isomorphic to aff, are algebraic.

Proof. 1t is clear that the equivalent statements (i), (ii) or (iii) of Theorem 1 imply
(ii) and (iii) from the corollary. It follows from the Propositions 3.6 and 3.9 that
every Lie subalgebra L isomorphic to saff, is contained in a Lie subalgebra @
isomorphic to aff,, hence (iii) implies (ii). It remains to prove that (ii) implies (i).

We will show that (ii) implies that L is equivalent to saff,. Then the claim follows
from Theorem 1. By (ii), there is a connected algebraic group G acting faithfully
on A? such that ®(LieG) contains L. Therefore, LieG contains a subalgebra s
isomorphic to sly, and so G contains a closed subgroup S such that Lie S = 5. Since
every action of SLy on A? is linearizable (see [KP85]), there is an automorphism ¢
such that ¢*(s) = sly = (20, y0,, 0, — y0y). But this implies, by Corollary 3.8,
that ¢*(L) = saffs,. O

Automorphisms of vector fields. We have seen in Lemma 2.4 that SAut 4 (P) =
SAut(K|[z,y]). In this last section we describe the automorphism groups of the Lie
algebras Vec(A?), Vec®(A?) and Vec”(A?).

Theorem 4.5. There are canonical isomorphisms
Aut(A?) =5 Autpa(Vec(A?)) =5 Autpa(Vec®(A?)) =5 Autza(Vec®(A?)).

For the proof we need the following two results. The first one is certainly well-
known. Recall that saffy = [affs, affy] C affy is invariant under all automorphisms
of the Lie algebra affs.

Lemma 4.6. The canonical homomorphisms
Ad res
Affy ——— Autpa(aff,) ——— Autpa(saff,)

are isomorphisms.

Proof. We write the elements of Affy in the form (v,g) with v € T = (K*)? and
g € GLy where (v, g)x = gz+v for z € A2 Tt follows that (v, g)(w, h) = (v+gw, gh).
Similarly, (a, A) € aff, means that a € t = (K)? and A € gl,, and (a, A)z = Az+a.
For the adjoint representation of g € GLy and of v € T on aff, we get

Ad(g)(a7A) = (gaagAgil) and Ad(v)(a7A) = (CL - AU7A)3
and thus, for (b, B) € affs,,
(xx) ad(B)(a, A) = (Ba,[B, A4]) and ad(b)(a,A) = (a — Ab, A).

Now let 6 be an automorphism of the Lie algebra saff,. Then 6(t) = t, because t is
the solvable radical of saff,. Since g := 6|y € GLa, composing § with Ad(g~!), we

can assume that ¢ is the identity on t. This implies that 0(a, A) = (a + £(A),0(A))
where £: sl — t is a linear map and 0: sly — sl is a Lie algebra automorphism.
From (xx) we get ad(b, B)(a,0) = ad(B)(a,0) = (Ba,0) for all a € t, hence

(Ba,0) = 0(Ba,0) = 6(ad(B)(a,0)) =
= ad(0(B))(a,0) = ad(d(B))(a,0) = (6(B)a,0).
Thus (B) = B, i.e. §(a, A) = (a + £(A), A). For ¢ := {(E) we obtain
0(a,A\E) = (a + e, A\E) = Ad(—c)(a, \E).
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Thus we can assume that 6 is the identity on KE C aff,,. Since M,, is the cen-
tralizer of KE in aff, this implies that 6(M,,) = M,,, hence 6(0, A) = (0,0(A)) =
(0,0(A)) = (0,A). As a consequence, 6 = id, and the claim follows. O

Lemma 4.7. If 6 is an endomorphism of the Lie algebra Vec®(A2?) which is the
identity on saffy, then 6 is the identity.

Proof. Tt follows from Lemma 2.1(d) and Lemma 2.2(b) that Vec®(A?) is generated
by the vector fields 9y, 229, and yd,. So it suffices to show that 6(z?dy) = x?dy.
Put D := 0(2?dy). Since [0y, D] = 0([0,,2?0,]) = 0 we see that D = h(z)d, +
f(x)dy. But 0 =DivD = h,, and so D = ad, + f(x)0,.
Now [0z, D] = 0([0x, a0y + 229,]) = 0(2x0,) = 220, = [0,,x?0,]. Hence D =

ady + 220y + b0y. Finally, [z0,, D] = —ad, = 0([zd,,2%9,]) = 0, hence a = 0,
and similarly, [yd,, D] = 220, — bd, = 0([ydy,x28,]) = 0(229,) = 2x0,, hence
b=0. O

Proof of Theorem 4.5. (a) The fact that Aut(A?) — Autpa(Vec(A?)) is an isomor-
phism goes back to KULIKOV (see proof of theorem 4, [Kul92]). For another proof
see [Bavl13].

(b) Tt follows from (a) that we have a canonical homomorphism, by restriction,
Auty4(Vec(A?)) — Autya(Vec®(A?)),

and since Vec”(A2?) C Vec®(A?) is an ideal of finite codimension and is simple as a
Lie algebra we also get a homomorphism

Autra (Vecc(Az)) — Autza (VGCO(A2))

which is easily seen to be injective. Thus it remains to show that the canonical
homomorphism w: Aut(A2?) — Autz(Vec’(A?)) is an isomorphism.

(¢) Tt is clear that w is injective. Let 6 be an automorphism of Vec’(A?). Tt
follows from Proposition 3.6 that there is an étale map ¢ such that ¢*(saff,) =
f(saffy). Hence the homomorphism #~! o ©* maps saff, isomorphically onto itself.
This implies, by Lemma 4.6, that (07! o ¢©*)|saj5, = Ad(¢)) that for a suitable
Y € Affy. By definition, ¥*|sa55, = Ad(¢))~1, and so the composition 71 o ¢* o h*
is the identity on saff,, hence the identity on Vec” (A?%), by Lemma 4.7. Therefore,
by Remark 3.4, ¢ is an isomorphism, and so § = ¢* o ¢* belongs to the image of
w: Aut(A?) = Autps(Vec(A?)). O

Remark 4.8. In [KRegl4] our Theorem 4.5 is generalized to any dimension, using
a completely different approach.
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CHARACTERIZATION OF n-DIMENSIONAL NORMAL AFFINE
SL,-VARIETIES

ANDRIY REGETA

ABSTRACT. We show that any normal irreducible affine n-dimensional SL,,-
variety X is determined by its automorphism group in the category of normal
irreducible affine varieties: if Y is an irreducible affine normal algebraic variety
such that Aut(X) = Aut(Y) as ind-groups, then Y = X as varieties. If we
drop the condition of normality on Y, then X is not uniquely determined and
we classify all such varieties. In case n > 3, all the above results hold true if we
replace Aut(X) by U(X), where U(X) is the subgroup of Aut(X) generated
by all one-dimensional unipotent subgroups. In dimension 2 we have some very
interesting exceptions.

1. INTRODUCTION AND MAIN RESULTS

Our base field is the field of complex numbers C. For an affine variety X the
automorphism group Aut(X) has the structure of an ind-group. We will shortly re-
call the basic definitions and results in Section 2. The classical example is Aut(A"),
n > 1, the group of automorphisms of the affine n-space A™. Recently, HANSPETER
KRAFT proved the following result which shows that the affine n-space is deter-
mined by its automorphism group (see [Kr15]).

Theorem 0. Let Y be a connected affine variety. If Aut(Y) = Aut(A™) as ind-
groups, then Y = A" as varieties.

In this paper we prove a similar result for some other varieties which we are
going to define now. Let d > 1. Consider the action of pg = {¢ € C*|¢4 =1} on A"
by scalar multiplication and denote by 7 : A™ — Ag ., := A™/pq the quotient. This
means that A4, is an affine variety with coordinate ring O(A4q,,) = Clx1, ..., zp]",
the algebra of invariants (see [Mu74]). Note that A4, is indeed an orbit space,
because f4 is finite. For d > 1, Ay, has an isolated singularity in 7(0) and =
induces an étale covering A"\ {0} — Ag, \ {p(0)} with Galois group p4. Later on
we consider only the case d > 1.

Theorem 1. Let X be a normal affine variety such that Aut(X) = Aut(Aqy) as
ind-group, then we have an isomorphism X = Ay, as varieties.

The standard representation of SL,, on C™ induces an action of SL,, on A4, for
any d, and we have the following result (see [KRZ17]).

Proposition 1. Let n > 3, and let Y be an affine normal variety of dimension n
with a non-trivial SLy,-action. Then 'Y is SL,, -isomorphic to Aq,y, for some d > 1.

The author is supported by the Swiss National Science Foundation (Schweizerischer National-
fonds).
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Now we drop the assumption of normality. Note that the ring of regular func-
tions O(Aq,n) equals @ Cla1, ..., Tn)dk, where Clz1, ..., x,]ax denotes the homo-
geneous polynomials of degree dk. Consider the affine variety Aj , with coordinate
ring O(Afi,n) =Co@,—,Clz1,...,zplar C O(Agy), s > 1. Then the induced mor-
phism n: Ag, — Afi,n is the normalization and has the property that the induced
map 7' : Agn \ {x} = Ag.,, \ {*} is an isomorphism, where x denotes the points
corresponding to the homogeneous maximal ideals. In fact, n is SL,-equivariant,
and Ay, \ {*} is an SL,-orbit. We prove the following result.

Theorem 2. Let X be an irreducible affine variety such that Aut(X) and Aut(Ag.,,)
are isomorphic as ind-groups, then X = Afl,n as a variety for some s € N.

For n = 2, any irreducible affine normal variety X endowed with a non-trivial
SLy-action is SLa-isomorphic to Ag2, SLe /T or SLy /N(T) (see [Pop73]), where T'
is the standard subtorus of SLa and N(T') denotes the normalizer of T

Theorem 3. Let X be an irreducible variety such that Aut(X) = Aut(SLq /T)
respectively Aut(X) = Aut(SLy /N(T)) as ind-groups, then X = SLy /T respectively
X = SLy /N(T) as varieties.

For an affine variety X we denote by U(X) C Aut(X) the subgroup generated
by the one-dimensional unipotent subgroups. We do not know whether U(X) has
the structure of an ind-subgroup (i.e. whether U(X) C Aut(X) is closed). That
is why we introduce the definition of an ”algebraic homomorphism”. This is a
homomorphism ¢ : U(X) — U(Y) such that for any subgroup U C U(X), where
U is a closed one-dimensional unipotent subgroup of Aut(X), the image ¢(U) C
Aut(Y) is a closed one-dimensional unipotent subgroup and ¢|y : U — ¢(U) is an
isomorphism of algebraic groups.

Theorem 4. Let n > 2 and let X be an irreducible affine variety. If there is
a bijective algebraic homomorphism U(X) — U(Aan), then X = Ag  for some
s>1.

Acknowledgement: The author would like to thank HANSPETER KRAFT for his
support during the writing of this paper. The author would also like to thank
MIicHEL BRION who suggested a number of important improvements and MIKHAIL
ZAIDENBERG for useful discussions.

2. PRELIMINARIES

The notion of an ind-group goes back to Shafarevich who called such objects
infinite dimensional groups, (see [Sh66]). We refer to [Kum02] and [Kr15] for basic
notions in this context.

Definition 1. By an ind-variety we mean a set V together with an ascending
filtration Vo C V4 C V5 C ... C V such that the following holds:

V= UkeN Vies

(2) each Vj, has the structure of an algebraic variety;

(3) for all k € N the subset Vi, C Vj41 is closed in the Zariski-topology.

A morphism from an ind-variety V' = |J, V4 to an ind-variety W = J,, Wi, is a
map ¢ : V. — W such that for any & there is an m such that ¢(Vj) C W, and such



46 ANDRIY REGETA

that the induced map Vj, — W, is a morphism of algebraic varieties. Isomorphisms
of ind-varieties are defined in the obvious way.

Two filtrations V' = (J,cny Vi and V' = [J,cn Vi are called equivalent if for
every k there is an m such that V,, C V;, is a closed subvariety as well as V}| C
Vin. Equivalently, the identity map id : V = ey Vi = V = Upeny Vi is an
isomorphism of ind-varieties.

An ind-variety V has a natural topology: a subset S C V is open, (resp. closed), if
Sk := SNV} C Vj is open, (resp. closed), for all k. Naturally, a locally closed subset
S C V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all varieties V}, are affine. Throughout this paper we
consider only affine ind-varieties and for simplicity we call them just ind-varieties.

The product of two ind-varieties is defined in the natural way. This allows to
give the following definition.

Definition 2. An ind-variety G is said to be an ind-group if the underlying set G
is a group such that the map G x G — G, (g, h) — gh™1!, is a morphism.

An ind-group G is called connected if for every g € G there is an irreducible
curve C' and a morphism C — G whose image contains the neutral element e and
g.

A closed subgroup H of G (i.e. H is a subgroup of G and is a closed subset)
is again an ind-group under the closed ind-subvariety structure on G. A closed
subgroup H of an ind-group G is an algebraic group if and only if H is an algebraic
subset of G.

The proof of the next result can be found in [St13] (see also [FK17]).

Proposition 2. Let X be an affine variety. Then Aut(X) has a natural structure
of an affine ind-group.

Note that in [St13] one can also find the description of the ind-group structure
on Aut(X).

3. AUTOMORPHISMS
Proposition 3. Any automorphism of Aqn lifts to an automorphism of C".

Proof. Let ¢ € Aut(Aqg,,). First we claim that p; := ¢*(z¢) and p; := ¢* (m?) are
coprime in C[z1, ..., ], where i # j and ¢* is the pull-back of ¢. Let p be a common

factor of p; and p;. Then p := [] gng IP divides pf and p?. By construction it is

clear that p € O(Aq,), then ¢—1(p) is a common factor of (¢*)~1(pd) = z&° and
(") 1Y) = x?z. Hence, p € C and therefore, p € C.

We have ¢* ()" ((29)?1) = ¢* (2fa{ ) = ¢ (2227 )? ie. pip?~! = ¢ for
some ¢ € O(Aq,,). Because p; is coprime with pj;, it follows that p; = q¢ for some
qi € Clzy, ..., 2.

The map ¢ induces an automorphism of A4, \ {7(0)} and we call it also by ¢.
Recall that the quotient 7 : A™ — Ay, induces an étale covering 7 : A"\ {0} —
Agn \ {m(0)}. As A"\ {0} is simply connected, it follows that every continous
automorphism of Ag ,\{m(0)} can be lifted to a continous automorphism of A™\{0}.
Since both varieties are complex manifolds and the covering is étale, the lift of
a holomorphic automorphism is also holomorphic. Thus, the automorphism ¢ of
Agn \ {m(0)} lifts to a holomorphic automorphism 1 of A™ \ {0}. Now consider
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qi := ¥*(x;). This is a holomorphic function on A™ \ {0} with the property that
¢ = ¢*(2d) = ¢*(2?) is a polynomial. It follows that the meromorphic function
rii= % is holomorphic outside the zero set of p; and satisfies rf = 1. This implies
that r; is a constant, hence ¢; = w;p; for some d-th root of unity w;, first outside
the zero set of p; and then everywhere. Thus ¢*(Clxy, ..., 2,]) C C[z1, ..., #,] which
means that ¢ is an algebraic morphism A™ — A™. It is an isomorphism because 1

is bijective. a

Let X be an affine variety, H be a finite group actingon X and let 7 : X — X/H
be the quotient morphism. Denote by Aut(X) c Aut(X) the subgroup of all
automorphisms of X which commute with the image of H in Aut(X).

Lemma 1. (a) Aut”(X) c Aut(X) is a closed ind-subgroup,
(b) there is a canonical homomorphism of ind-groups ¢ : Aut™ (X) — Aut(X/H),
(c) if X is normal and contains only finitely many fized points of H then every
C™*-action on X/H lifts to a C*-action on X.

Proof. (a) Consider the homomorphisms ¢, : Aut(X) — Aut(X), én(g) = ghg™!.
Then Aut” (X) = Npeney, (H), where ¢ ' (H) C Aut(X) is a closed subvariety.
This proves the claim.

(b) Now let h € H, f € O(X)? and ¢ € Aut” (X). Then ¢* : O(X) = O(X)
is an isomorphism and h(¢*(f)) = 6" ((6*) " o h o 6°)(f) = (6" o )(J) = 6°(/)
for some b/ € H. Therefore ¢*(f) € O(X)H, which means that ¢ induces an
automorphism of X/H.

(c) There is an isomorphism of the space of derivations Der(O(X)) with Hom(Q2},
O(X)), where Q% denotes the Kéhler differential forms on X. By [Ha80, Corollary
1.2], Hom(Q%, O(X)) is a reflexive sheaf. Hence, Hom(Qﬁ(\Y, O(X \Y)) coincides
with Hom(Q%, O(X)) for any closed subset Y C X of codimension at least 2 (see
[Ha80, Proposition 1.6]). Since X is normal, the quotient X/H is normal too. This
implies that Der(O(X/H)) = Der(O(X/H \ Z)) for any closed subset Z C X/H
such that codimy, g (Z) > 2.

Let Z C X/H be the image of the union of the set of fixed points under the
action of the group H and the set of singular points of X. The map 7|x\r-1(z) :
X\77YZ) — X/H\ Z is a finite étale covering with group H. Hence, the pullback
7 (Tx/m\z) of the tangent bundle T'x/ i\ z of X/H\ Z coincides with T'x\ r-1(z) and
then T'x g\ z = nH (T'x\x~1(z)) which consists of H-invariant sections X\ Y2Z) —
T'x\x-1(z)- This implies that Der(O(X/H)) = Der(O(X/H\Z)) is naturally isomor-
phic to Der” (O(X \ 77(Z))) = Der” (O(X)), where Der” (O(X)) € Der(O(X))
denotes the vector subspace of H-invariant derivations. This means that each deriva-
tion of O(X/H) lifts to a derivation of O(X) and then by [Vas69, Theorem 2.2],
each locally nilpotent derivation of O(X/H) lifts to a locally nilpotent derivation
of O(X). The claim follows. O

Let us recall that a closed subgroup U of Aut(X) is called a 1-dimensional
unipotent subgroup if U = C™.

Proposition 4. The homomorphism ¢q : Aut'?(A™) — Aut(Aqgy) is surjective
with kernel pq. Moreover, every 1-dimensional unipotent subgroup of Aut(Aq.) is
the image of some 1-dimensional unipotent subgroup of Auth¢(A™).
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Proof. The surjectivity of ¢4 follows from Proposition 3. The last claim of the
statement follows from Lemma 1 (¢). What remains is to compute the kernel of ¢.
It is clear that

Authd(A™) = {f = (1, fn) € Aut(A")| fi € @D Clar, ooy @nlpayr,i = 1,...,n}.
k=0
Now let f = (f1,..., fn) € Aut"?(A™) be such that the map f’ induced by f on
A" /ug4 is the identity. This means that f’ acts trivially on O(A™/uy) = C &
@D~ Clz1, ..., Tn]ka- Hence, f/(zf) = z¢ for any i which implies that f = (&2, ...,
&ny), where €4 =1 for i = 1,...,n. In particular, f’(x?‘lxj) = z?‘lxj which im-
plies that ffl_lﬁj =1 for any 4, j. Because fid_lfi = 1 we conclude that & = ;. The
claim follows. O

4. ROOT SUBGROUPS

Let G be an ind-group, and let T' C G be a closed torus.

Definition 3. A closed subgroup U C G isomorphic to C* and normalized by T
is called a root subgroup with respect to 7. The character of T on LieU = C i.e.
the algebraic action of T on Lie U is called the weight of U.

Let X be an affine variety and consider a nontrivial algebraic action of C* on
X, given by A : C* — Aut(X). If f € O(X) is C*-invariant, then the modification
f - A of \is defined in the following way:

(f - N(s)z == A(f(x)s)x

for s € C and x € X. It is easy to see that this is again a CT-action. In fact, the
corresponding locally nilpotent derivation to f - A is fd, where §, is the locally
nilpotent derivation which correspond to A. It is clear that if X is irreducible and
f # 0, then f- X and X have the same invariants. If U C Aut(X) is a closed
subgroup isomorphic to CT and if f € O(X)V is a U-invariant, then in a similar
way we define the modification f-U of U. Choose an isomorphism A : C* — U and
set f-U :={(f-N)(s)|]s € CT}. Note that Lie(f-U) = fLieU C Vec(X).

If a torus T acts linearly and rationally on a vector space V, then we call V
multiplicity-free if the weight spaces V,, are all of dimension < 1.

Lemma 2 ([Kr15]). Let X be an irreducible affine variety and let T C Aut(X) be a
torus. Assume that there exists a root subgroup U C Aut(X) with respect to T such
that the T-module O(X)Y is multiplicity-free. Then dimT < dim X < dim7T + 1.

5. A SPECIAL SUBGROUP OF Aut(X)

For any affine variety X consider the normal subgroup U(X) of Aut(X) gen-
erated by closed one-dimensional unipotent subgroups. The group U(X) was in-
troduced and studied in [AFK13], where the authors called it the group of special
automorphisms of X. After [Kr15] we introduce the following notion of an algebraic
homomorphism between these groups.

Definition 4. A homomorphism ¢ : U(X) — U(Y) is algebraic if for any subgroup
U C U(X) such that U C Aut(X) is closed, U = C*, the image ¢(U) C Aut(Y)
is closed and ¢|y : U — ¢(U) is a homomorphism of algebraic groups. We say
that U(X) and U(Y") are algebraically isomorphic, U(X) = U(Y), if there exists a
bijective homomorphism ¢ : U(X) — U(Y) such that ¢ and ¢! are both algebraic.
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A subgroup G C U(X) is called algebraic if G C Aut(X) is the closed algebraic
subgroup. The next lemma can be found in [Kr15, Lemma 4.2].

Lemma 3. Let ¢ : U(X) — U(Y) be an algebraic homomorphism. Then, for any
algebraic subgroup G C U(X) generated by one-dimensional unipotent subgroups of
Aut(X), the image ¢(Q) is an algebraic subgroup of U(Y) and ¢|¢ : G — ¢(G) is

a homomorphism of algebraic groups.

Lemma 4. Let X be an irreducible affine variety, and let n: X — X be its nor-
malization. Then every automorphism of X lifts uniquely to an automorphism of
X and the induced map 7 : U(X) — U(X) is an algebraic homomorphism.

Proof. Let C(X) be the field of rational functions on X. Then any automorphism
¢ of the ring of regular functions O(X) uniquely extends to an automorphism
¢ of C(X). We claim that O(X) is invariant under ¢, which would prove the
first part of the lemma. Indeed, by definition f belongs to (’)(f( ) if there is a
monic polynomial F = t" + c1t" ! + ... + ¢, € O(X)[t] such that F(f) = 0. Then
o(F(f)) = G(o(f)) = 0 for some monic G € O(X)][t], which proves the claim.

To prove the second part of the lemma, we note that any action of an algebraic
group G on X lifts uniquely to a G-action on X. This follows from the fact that
GxX is normal, the universal property of normalization and the following diagram:

GxX —— X

lidc Xmn J/"]

GxX —— X
Therefore, each regular C*-action on X lifts uniquely to a regular C*-action on X,
which proves the claim. O

Proposition 5. Let n > 3 and let X be an n-dimensional irreducible affine variety
endowed with a non-trivial SLy, -action. Then O(X) = (C@Zézl > hek, Cl,s s Tnlka,
for some I, k;,d; € N. The same holds when n = 2 and the normalization of X is
Ago for some d € N.

Proof. First, let n > 3. If X is normal, then by Proposition 1, X = A, for some
d € N. It is clear that O(Aq,n) = @ZOZO Clz1, ..., Znka is a direct sum of irreducible
pairwise non-isomorphic SL,-modules Clz1, ..., Zp]xa-

Now, consider any n-dimensional irreducible affine variety X endowed with a
non-trivial SLy,-action and a normalization morphism 7 : A4, — X. Since any SL,,-
action on O(X) lifts to an SLj,-action on O(Ag,,), it follows that O(X) is a SL,,-
submodule of O(A4,,) and therefore O(X) = @, cq Clz1, ..., Tn|xa, Where Q is a
submonoid of N under addition. Since O(X) is finitely generated, Q C N is a finitely
generated submonoid i.e. there exist k1, ...,k € N such that Q = kN +....k;N. The
claim follows. O

6. 2-DIMENSIONAL CASE
The next result can be found in [Pop73], §3 (see also [Kr84], §4).

Lemma 5. Let X be an affine normal irreducible variety of dimension two endowed
with a non-trivial SLa-action. Then X is SLo-isomorphic to one of the following
varieties:
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(a) Agzo for some d € N,
(b) SLo /T, where T is the standard subtorus of SLa,
(c) SLa /N(T), where N(T) is the normalizer of T.

The SLa-variety Ag o is the union of a fixed point and the orbit (C?\ {0})/uq =
SLy /U4, where 14 acts by scalar multiplication on C?\ {0} and Uy = { [g ;1} It €
C,¢ € C*,¢% = 1}. Moreover, any closed subgroup of SLy of codimension < 2 is

either T, N(T'), Ugq for some d > 1 or B = {{g afl} [t € C,a € C*} (see [Web2]).
The next result can be found in [Kr84, II1.2.5, Folgerung 3].

Proposition 6. If a reductive group G acts on an affine variety X and if the
stabilizer of a point x € X contains a mazximal torus, then the orbit Gx is closed.

Proposition 7. Let X be an SLo-variety and let O = SLyx be the orbit of x.
Assume that dim O < 2. Then we are in one of the following cases:

(a) x is a fixed point;

(b) the orbit O is closed and SLa-isomorphic to SLg /T or SLy /N(T);

(¢c) O = OU{zo}, where O is the closure of the orbit O and xq is a fived point.
Moreover, either O ~ A2 or xq is an isolated singular point.

Proof. If the stabilizer of z contains a maximal torus then we are in case (a) or
(b) by Proposition 6. Otherwise, from the classification of closed subgroups of SLs
it follows that the stabilizer of = coincides with Uy for some d > 1 and O does
not contain orbits of dimension one. Hence, O = O U {xo}. It is clear that if O is
singular, then ¢ is an isolated singular point. If O is smooth, then from Lemma, 5
it follows that O is isomorphic to AZ. O

Note that SLy /T = P! x P\ A, where A is the diagonal, and SLy /N (T) = P2\ C,
where C' is a smooth conic (see [Pop73, Lemma 2]).
There is the following well-known result.

Lemma 6. Let X be a variety and let G C Aut(X) be an algebraic subgroup.
Assume that X = Gx for z € X. Then Aut®(X) = Ng(Gz)/G,.

In fact, the right-multiplications on G/H with elements from Ng(H)/H are
the automorphisms of G/H which commute with the left-multiplications with all
elements from G.

Lemma 7. Consider the natural SLa-action on X = SLo /T,SLo /N or Agso, and
denote by S C Aut(X) the image of SLs.

(a) If X = SLy /T, then S = PSLy and Aut®(X) = {r,id}. Moreover, T acts
freely on X, and X/T = SLy /N(T).

(b) If X = SLy /N(T), then S = PSLy and Aut®(X) = id.

(c) If X = Ag o, then S =2 SLy if d is odd and S = PSLy if d is even. Moreover,
Aut? (X) = C* is given by the image of C* acting by scalar multiplication on A2, In
particular, the groups Aut(SLy /T) and Aut(SLy /N(T)) are not isomorphic, and
also not isomorphic to Aut(Aqz2) for any d > 1.

Proof. Since the natural action of SLy on SLy /T or SLy /N(T') is transitive, (a) and
(b) are immediate consequences of Lemma 6. For (¢) we remark that X contains
the orbit O 22 SLy /Uy. For d = 1, i.e. for X = A? the claim is well-known. If d > 1,
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then Aut(X) = Aut(O), since the complement of O in X is a singular point. Now
the claim follows from Lemma 6. g

The variety SLo /T is isomorphic to the following so-called DANIELEWSKI surface,
i.e. the smooth 2-dimensional affine quadric V (zz —y? +y) C A? (see [DP09]) and
b
d
difficult to see that X := V(zz +y* — 1) 2 V(zz — y? +y) C A3.

By Lemma 7, there is an automorphism 7 € Aut® (X) which acts freely on X and
the quotient Y := X/7 is isomorphic to SLs /N(T), i.e. m : X — Y is a principal
Z/2-bundle. In particular, O(Y) = O(X)7. An automorphism ¢ of X descends to
an automorphism on Y if and only if ¢ sends T-orbits to T-orbits. In fact, such
an automorphism sends 7 -invariant functions of O(X) to 7-invariant functions of
O(X). Since 7 has order 2, this condition for ¢ is equivalent to the condition that ¢
commutes with 7. We first note that Aut” (X) is a closed subgroup of Aut(X) and
then the canonical map p : Aut” (X) — Aut(Y) is a homomorphism of ind-groups.
In fact, kernel of p equals (7).

The following proposition follows from Lemma 1(c).

the quotient map m : SLy — SLo /T is given by — (ab,ad, cd). Tt is not

Proposition 8. Every CT-action on Y lifts to a CT-action on X. In particular,
the image p(Aut, (X)) contains U(Y) and p~*(U(Y)) C U(X)

Corollary 1. For every algebraic subgroup G C U(Y') the inverse image 71 (G) C
Aut,(X) is algebraic. If G is generated by unipotent elements, then m—1(G) =
7 G0 x (7).

By [Lam05, Theorem 6], Aut(X) is the amalgamated product of the orthogonal
group O(3,C) = SO(3,C) x (r) and Jr x (1) along their intersection Cr, where
T = (—x,—y,—2), Jr is the group of automorphisms of the form

(z,y,2) — (ax 4 2ayP(2) — azP?(2), (y — 2P(2)), éz); aeC*, PeClz].

Hence, Aut(X) is generated by U(X) and (7). Since U(X) is the normal subgroup
of Aut(X), it follows that Aut(X) = U(X) x (7). By [Neud8, Corollary 8.11],
U(X) is the amalgamated product of SO(3,C) and Jr. Note that the subgroup
U(X) = Aut’(X) € Aut(X) is closed (see [Kr15, Lemma 6.3]), where Aut®(X) is
the neutral component of Aut(X). Hence, U(X) is an ind-group. By the following
computation

(tx,y,t712) o (x + 2yP(z) — 2P%(2), (y — 2P(2)),2) o (t 'x,y,tz) =
= (z + 2ytP(tz) — 2t*P%(t2), (y — 2tP(t2)), 2),

it is easy to see that U; = {(z +2yP;(2) — 2P?(2), (y — 2P;(2)), 2)| Pi(2) = 2'} is the
root subgroup with weight i + 1 with respect to 7" = {(tx,y,t~12)|t € C*} = C*
for any ¢ € NU {0}. The fact that there is no other root subgroups with respect to
T" follows from amalgamated product structure.

Summarizing everything that is said above, we have the following result.

Proposition 9. For X = SLy /T we have the following properties.

(a) All closed subgroups S C Aut(X) isomorphic to PSLy are conjugate.

(b) The root subgroups with respect to a maximal torus T" of some S = PSLy
are multiplicity-free with weights 1,2,3, ...
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It is not difficult to see that Aut” (X) is the amalgamated product of SO(3,C) x
(t) and J7 x () along their intersection, where

J” ={(z,y,2) = (ax+2ayP(z)—azP%(2), (y—2P(2)), éz); aecC" Pe @(Czﬂ}.
1=0

By [Neu48, Corollary 8.11], Aut” (X) is the amalgamated product of SO(3,C) x (7)

and J7 x (1) along their intersection.

Recall that map p : Aut” (X) — Aut(Y) is the surjective homomorphism with
kernel (7). Hence, Aut(Y) = Aut"(X)/(r). By [Co63, Theorem 1], Aut(Y) is
the amalgamated product of SO(3,C) and J™ along their intersection. Therefore,
Aut(Y)=U(Y).

Summarizing everything that is said above and Proposition 9, we have the fol-
lowing result.

Corollary 2. The root subgroups with respect to a mazimal torus T" of any S =
PSLy are multiplicity-free with weights 1,3,5,.... In particular, U(SLs /N(T)) %
U(SLy /T).

Recall that by Corollary 4, there is a homomorphism ¢g : Aut”?(A™) — Aut(Ag,)
of ind-groups. Consider now the torus T,, = {(¢1,...,ts)|t: € C*} C Aut(A™) and
the torus T/, = {(t1,...,tn)|t; € C*,t1 - ... - t, = 1} C U(A™) of dimension n — 1.
Then T, := ¢4(T}) is a maximal subtorus of U(Ag,) C Aut(Ag,)-

The following lemma is easy and follows from Lemma 12.

Lemma 8. Let d be even. Then weights of root subgroups of Aut(Ag2) with respect
to Ty are {¥42| k e NU{0}}.

By Jung - Van der Kulk theorem (see [Ju42] and [Kul53]) Aut(A?) = Affg*cJ,
where Aff, is the group of affine transformations of A%, J = {(az+b, cy+ f(x))|a,c €
C*,b € C, f(y) € C[z]} and C = AffyNJ. Subgroup Aut’*(A?) C Aut(A?) also has
a structure of amalgamated product by [Neu48, Corollary 8.11], namely, Aut**(A2)
is the amalgamated product of GLy and Ji, = {(az + b,cy + f(x))|a,c € C*,b €
C, f(y) € @, Ca'*+1} along their intersection (see also [AZ13, Theorem 4.2]). From
Proposition 4, it follows that Aut(Ay2) =2 Aut"*(A?)/uy and by [Co63, Theorem
1], Aut”*(A2%)/puy is the amalgamated product of GLg /ux and Jy/p along their
intersection C},. Hence, it is easy to see that U(A?/usz) is the amalgamated product
of PSLy and Jo = {(az + b,cy + f(z))|a,c € C*,b € C, f(y) € @, Cx'**1} along
their intersection.

Note that O(A4q,) C Clzy,...,x,] for any d > 1. Hence, we can define the
Jacobian matrix of f = (fi,..., fn) € Aut(Ag,) in the ususal way ie. Jac(f) =
(gi; )ij and then j(f) := detJac(f). It is also well-known that U(A?) = {f €
Aut(C?)| j(f) € C*}. Tt follows that U(Ag2) = {f € Aut(Ag2)| j(f) € C*}.
Therefore, U(Aq,2) C Aut(Ag2) is the closed subgroup.

The following result was pointed to us by HANSPETER KRAFT.

Proposition 10. Let Z be an irreducible affine normal variety of dimension 2.
(a) Assume that there is a bijective algebraic homomorphism U(SLe /T) — U(Z).
Then Z = SLy /T or Az s.
(b) Assume that there is a bijective algebraic homomorphism U(SLy /N(T)) —
U(Z). Then Z =2 SLy /N(T) or A4 2.



CHARACTERIZATION OF n-DIMENSIONAL NORMAL AFFINE SL,-VARIETIES 53

Proof. Choose an SLy-action on Z such that the the root subgroups with respect
to the image T' C U(Z) of the diagonal torus T' C SLs are multiplicity-free with
weights 1,2, 3, .... The existence of such an action is given by Proposition 9(b) for
SLo /T , and then follows for SLy /N(T') by Corollary 2. By Lemma 5, Z is SLo-
isomorphic to SLg /T, to SLy /N(T'), or to Ag 2 for some d € N.

To prove the claim, we first note that U(SLy /T) 22 U(SLy /N(T)) by Corollary
2. Let X = SLy /T or to SLy /N(T). Then the isomorphism U(X) = U(C?/uq)
implies that d is even by Lemma 7. By Lemma 13, weights of root subgroups of
U(X) and U(Aqg,2) have to be equal and then Lemma 8 implies that U(SLq /T')
can only be isomorphic to U(Az2), and U(SLy /N(T)) can only be isomorphic to
U(Au4,2) by Corollary 2.

To show that U(Az2) and U(SLy /T') are algebraically isomorphic, we first note
that the first factors from the amalgamated product (described above) of U(Asz2)
and U(SLy /T) are isomorphic to PSLy. To show that Jy and Jr are algebraically
isomorphic, it is enough to say that they have the same weights with respect to the
standart subtori. It remains to remark that Cp = C,. Analogously, U(A4,2) and
U(SLy /N(T)) are algebraically isomorphic too. O

7. HIGHER-DIMENSIONAL CASE

The next result can be found in [Liell, Theorem 1]. Recall that by T), we denote
the standard maximal subtorus of SAut(A™) = {f = (f1, ..., fn) € Aut(A")|jac(f) :=

Lemma 9. Let U C SAut(A™) be a one-dimensional unipotent subgroup. Then
U is a root subgroup with respect to T, if and only if U = Uy = {(z1,...,2; +
My, ..., Tp)|c € C}, where m; = xi‘lm;\fllav;\ﬁlx%" The character £, corre-
sponding to the root subgroup U is the following: & : T, — C*, t = (t1,...,tn) —

tt Mt

Remark 1. The last lemma can also be expressed in the following way (see
[KS13, Remark 2]): there is a bijective correspondence between the T -stable one-
dimensional unipotent subgroups U C Aut(A™) and the characters of T, of the
form A = > j Aje; where one \; equals 1 and the others are < 0. We will denote
this set of characters by X, (T)):

X (T) ={\= Z)\jej|such that A\; =1 and X\; <0 for j #i}.

If A € X, (T)), then Uy denotes the corresponding one-dimensional unipotent sub-
group normalized by T7..

Lemma 10. Consider the standard action of SL,, on Aq; and denote by Sy .q C
Aut(Agn) the image of SL,. Then Sy, 4 = SL, /ji(n,q4), where (n,d) denotes the
greatest common diwvisor of n and d. Moreover, Sy, q C U(Agn).

Proof. By Proposition 4, there is a surjective homomorphism ¢4 : Aut’?(A™) —
Aut(Ag ) of ind-groups with ker ¢ = pq. Hence, Aut(Ag,) = Aut”?(A™)/puq which
shows that S, 4 = SL,, /114. The second claim is clear. O

Corollary 3. If U(Aan) and U(A;,) are algebraically isomorphic, then (d,n) =
(I,n).
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Recall that by Proposition 4 there is a homomorphism ¢g : Aut’¢(A™) —
Aut(Ag,) of ind-groups and we denote by T, the subtorus ¢q(T)) C U(Agn).
Map ¢4 induces the map ¢g : Uta(A"™) — U(Aqg,,) which has the kernel ji(, 4,
where UH4(A™) C Aut’*(A™) is a subgroup generated by C*-actions.

In [BB67], it is proved that any faithful action of an (n — 1)-dimensional torus
on A™ is linear. This result is used in order to prove the following lemma.

Lemma 11. Let T be an algebraic subtorus of U(Aq,) of dimension (n—1). Then

there exists a bijective algebraic homomorphism F : U(Agn) = U(Aan) such that
F(T)="1,.

Proof. Torus (¢;"(T))° is an algebraic subgroup of U(A™) isomorphic to (C*)"~1.
By [BB67, Theorem 1], the torus ¢ *(7)° is conjugate to some subtorus T of T}, in
Aut(A™). Since U(A™) is the normal subgroup of Aut(A™), T C T/, = T,, N U(A").
Therefore, (¢;"(T))° is conjugate to 77, which proves the claim. O

Lemma 12. Let U C Aut(Ag,) be a root subgroup with respect to Ty which has
a character x. Then U lifts to a root subgroup U := (¢7*(U))° C Aut,, (A™) with
respect to T, = (¢ (T4))° with character ¥ = ¢*(x) such that the following
diagram

P

1 —— H(n,d) T,;L Ty 1

R

cr —— C*
commute, where Y = ¢q|7: and *(x) is a pull-back of x.

Proof. From Proposition 3 it follows that any root subgroup U of Aut(Ag,) with
respect to Ty lifts to a unipotent subgroup U = (¢ (U))° of Aut”(A™). Moreover,
U is normalized by (¢ (T4))° = T5,. Now, let @ € U and u = ¢4(ii) € U. Then
da(t~tod(s) ot) = gg(a(ths)) = u((t*)s) for some k € N, which proves the
claim. g

Proposition 11. Let X = Ag,, SLy /T or SLy /N(T) and Y be an irreducible
affine variety. Let also assume that there is a bijective algebraic homomorphism
U(X) S U(Y). Then dimY < dim X. Moreover, if additionally Y is normal, then

(a) if X 2 SLy /T, then Y = As s orY = SLy /T,

(b) ZfX = A272, then Y = AQ’Q orY = SL2 /T,

(c) if X =2 SLo /N(T), thenY = Ay orY = SLy /N(T),

(d) ZfX = A4’2, then Y = A4,2 orY = SL2 /N(T),

(e) otherwise, Y = Ag,.

Proof. Fix an algebraic isomorphism ¢ : U(X) = U(Y') and denote by 7" the image
of Ty if X = Ay 2 or the image of a maximal subtorus T of U(X) if X = SLy /T or
SLs /N(T). By Lemma 12, Proposition 9 and Corollary 2, all root subgroups U C
U(Y) with respect to 7" have different weights. In particular, the root subgroups
O(Y)Y.U c U(Y) have different weights, which implies that O(Y)Y is multiplicity-
free, because the map O(Y)YV — O(Y)V - U is injective. Hence, by Lemma 2, we
have that dimY < dim7T” + 1 = n, which proves the first part of the lemma.
Now (a), (b), (c¢) and (d) follow from Proposition 10.
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To prove (e), we note that SLy, /g q) belongs to U(Aqg,n), which implies that
SL,, acts non-trivially on Y and thus, by Proposition 1, Y = A, ,, for some [ € N.
Hence, ¢ : U(A4n) = U(A;,). By Lemma 11 there exist an algebraic isomorphism
F :U(A;,) = U(A;,) such that F(y(T,)) = T;. Therefore, we can assume that
Y(Ty) = T;. Groups U(A;,,) and U(Ag,) can be isomorphic only if (n,d) = (n,1)
by Corollary 3. Then, by Lemma 13, weights of root subgroups of U(Ag4,) and
U(A; ) with respect to tori Ty and T; respectively have to coincide and the claim
follows from Lemma 12. d

Proof of Theorem 1. It is clear from the definition that an isomorphism of ind-
groups Aut(X) = Aut(Ag,,) induces an algebraic isomorphism U (X) = U(Ag.,)-
Now the claim follows from Proposition 11 and Lemma 7. O

Let Z be an irreducible affine SL,,-variety of dimension n > 2 and ¢ : U(Z) =
U(Aq,y) be an algebraic isomorphism. Let T be an (n — 1)-dimensional algebraic
subtorus of U(Z). Then, by Lemma 11, we can assume that ¢(T") = Ty.

Lemma 13. Let ¢ : U(Z) = U(Aan) be as above. Then root subgroups U and
W(U) have the same weights with respect to T and Ty respectively.

Proof. Let U be a root subgroup of U(Z) with respect to T and Lie U = Cv, where v
is a generator. Then ¢ (U) is the root subgroup of U(Ay,,) with respect to T,. The
algebraic isomorphism 1 induces an isomorphism dy¥ : LieU — Liet(U). Note
that action of T on U induces the action of T' on LieU. Then dy¥(tovot™1) =
dy(x(t)v) = x(¥(t))y(v), where x : T — C* is a character. O

Theorem 5. Let X = Ay, SLa /T or SLy /N(T) and Y be an irreducible affine
variety. Let also there is a bijective algebraic homomorphism U(Y') — U(X). Then

(a) if X =2 Ago, then Y = SLy /T orY = A3, for some s € N,

(b) if X = SLy /T, then Y = SLy /T orY = A5, for some s € N,

(c)if X = Ay, then Y = SLy /N(T) or Y = Aj 5 for some s €N,

(d) if n =2 and X = SLy /N(T), then Y = SLy /N(T) or Y = Aj, for some
seN,

(e) otherwise, Y = A3 for some s > 1.

Proof. Let ¢ : U(X) — U(Y) be an algebraic isomorphism. Proposition 11 implies
that dimY < dim X. Since SL,, acts regularly and non-trivially on X, SL,, also
acts non-trivially and regularly on Y.

First, let X be isomorphic to Ag,. Then by Lemma 5 and by Proposition 1,
normalization of ¥, which we denote by Y, is isomorphic to SLy /T, SLy /N (T') or
A for some I > 1.

First, assume that ¥ 2 A; . Hence, Proposition 5 implies that O(Y) = C &
Sy ZZ';;% Clz1, ..., ]k, for some r k;,l; € N, i€ {1,...,1}. Let n: A;,, > Y be
the normalization morphism which by Lemma 4 induces the algebraic homomor-
phism 7 : U(Y) < U(A;,). Note that SL, /pu,q) acts faithfully on X. Then
SL,, /M(n,d) also acts faithfully on Y and therefore on A;,. This implies that

(n,d) = (n,l). By Lemma 11, we can assume without loss of generality that
=1~ (T) = Ta.
It is clear that for any s; > k;, the group U = {(x; + ca3 " o, ..., z0)|c €

C} C Aut"(A"™) induces a root subgroup U of U(Y) with respect to 7~1(7}), and
then U acts on O(Y'). Since (n,d) = (n,1), ¢4|7: and ¢;|7; have the same kernels,
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and because U and ! (U) have the same weights with respect to 7~ (7}) and Ty
respectively, by Lemma 12, U should also induce a C*-action on Ay ,. Hence, U
acts on O(Aq,,) and then d + s;d; € Nd. Since s; is any natural number greater
than or equal to k;, d|d; for each i. Therefore, Nd; + ... + Ndj, C Nd.

Analogously as above, for any k > 1, subgroup U’ = {(x1 +ca5®™ 2o, ..., 2,)|c €
C} C Aut"¢(A™) induces a root subgroup of U(Ag,,) with respect Ty. Then U’
acts on O(Y), which implies that d;k; + kd € (N>g,di + ... + N>y, d;) for any
i, where N>p := {m € N|m > k}. This shows that N>y, di + ... + Nop,dp =
NZHlini{kidi|i:1»-~7l}d'

Now assume that Y is isomorphic to SLy /T or to SLy /N (T'), then by Proposition
7,Y =Y. Then (e) follows from Proposition 10.

Let now X 2 SLy /T Then by Lemma 5, Y can only be isomorphic to SLy /T,
SLy /N(T') or Az . By Proposition 10, Y is isomorphic to SLo /T or to Ago. If
Y = SLy /T, from Proposition 7, it follows that ¥ = Y. Hence, (b) follows from
the first part of the proof. Analogously follows (d). O

Proof of Theorem 2. The isomorphism Aut(X) = Aut(Ag,) induces an algebraic
isomorphism U(X) — U(Ay,,). Note that X admits a torus action of dimension n.
From Theorem 5 it follows that X can only be isomorphic to A7 ,,. Since normaliza-
tion of Afjm is equal to Ag p, it follows from [FK17] that there is a closed embedding
Aut(47,,) = Aut(Aqgy) of ind-groups and the proof follows from Lemma 4. O

Proof of Theorem 3. Isomorphism Aut(X) = Aut(SLy /7)) induces an algebraic
isomorphism U(X) — U(SLs /T). Then the claim follows from Theorem 5 and
Lemma 7. (]

Proof of Theorem 4. Follows from Theorem 5. (]
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GROUPS OF AUTOMORPHISMS OF DANIELEWSKI SURFACES

MATTHIAS LEUENBERGER AND ANDRIY REGETA

ABSTRACT. We show that subgroups U(SL2 /T') C Aut(SL2 /T) and respec-
tively U(A2/u2) C Aut(A?/u2) generated by Ct-actions are not isomorphic
as ind-groups although U(SLs2 /T) and U(AZ?/u2) are algebraically isomorphic
i.e. there is an isomorphism ¢ : U(SLga /T) — U(A2/u2) of abstract groups
and the restriction of ¢ to any one-dimensional connected unipotent subgroup
is an isomorphism of algebraic groups. We also prove that the Lie subalgebra
of the Lie algebra of vector fields Vec(Dj) generated by locally nilpotent vector
fields on Dy, is simple.

1. INTRODUCTION AND MAIN RESULTS

Our base field is the field of complex numbers C. For an affine variety X the
automorphism group Aut(X) has the structure of an ind-group. We will shortly
recall the basic definitions in the following section 2. The classical and most studied
example is Aut(A"™), the group of automorphism of the affine n-space A™. Other
examples which have gotten a lot of attention in recent years are Danielewski sur-
faces D, = {(x,y, 2) € A3|zy = p(2)}, where degp > 2 and p has no multiple roots.
Note that SLy /T = D, = V(zz — y?> +y) C A3 (see [DP09]).

Let X be an affine variety. By U(X) we define the subgroup of Aut(X) gen-
erated by Ct-actions (see [AFK13] for details). Let us denote by us the cyclic
group of order 2, which acts on A? in the following way: & (z,y) = (£z,£y), where
& € pso. In [Regl7, Proposition 10] it is shown that there is an abstract isomorphism
¢ : U(SLg /T) — U(A?/uz) such that the restriction of ¢ to any algebraic subgroup
U = C* is an isomorphism of algebraic groups. Note that U(A?/usz) is a closed sub-
group of Aut(A2/us) (see [Regl7, Proposition 10]) and U(SLy /T) = Aut®(SLy /T)
is a closed subgroup of Aut(SLy /T') (see Proposition 4). Hence, U(SLy /T) and
U(A?/pus) are ind-groups.

Theorem 1. The ind-groups U(SLy /T) and U(A%/us) are not isomorphic.

In order to prove the above result we show that Lie subalgebras Lie U(SLy /T)
and Lie U(A?/ju5) are not isomorphic.

Let Vec(D,) be the Lie algebra of vector fields on D,,. Consider the Lie subalge-
bra Lie™® U(D,) C Vec(D,,) generated by all locally-nilpotent vector fields on D,,.
We prove that such a Lie algebra is simple.

Theorem 2. Let D, be a Danielewski surface, where degp > 2. Then Lie®9 U(D,)
s a simple Lie algebra.

The authors are supported by Swiss National Science Foundation (Schweizerischer National-
fonds).
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2. PRELIMINARIES

The notion of an ind-group goes back to Shafarevich who called these objects
infinite dimensional groups, see [Sh66], [Sh81]. We refer to [Kum02] and [Kr15] for
basic notations in this context.

Definition 1. By an ind-variety over C we mean a set V' together with an ascending
filtration Vi C Vi C Vo C ... CV such that the following holds:

(1) V =Upen Vis

(2) each Vi, has the structure of an algebraic variety;

(3) for all k € N the subset Vi, C Viy1 is closed in the Zariski-topology.

A morphism between ind-varieties V' = |J, Vi, and W = |J,, Wy, is a map
¢ : V. — W such that for every k there is an m € N such that ¢(Vi) C W,
and that the induced map Vj, — W, is a morphism of varieties. Isomorphisms of
ind-varieties are defined in the usual way.

Two filtrations V' = (J,cny Vi and V' = U,cn Vi are called equivalent if for
any k there is an m such that Vj, C V}), is a closed subvariety as well as V] C
Vin. Equivalently, the identity map id : V = Upen Vi = V' = Upen Vi is an
isomorphism of ind-varieties.

An ind-variety V has a natural topology where S C V is open, resp. closed, if
Sk := SNV, C Vi is open, resp. closed, for all k. Obviously, a locally closed subset
S C V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all V}, are affine. Throughout this paper we consider
only affine ind-varieties and for simplicity we call them just ind-varieties.

For any ind-variety V' = (J,cy Vi we can define the tangent space in € V' in
the obvious way. We have x € V}, for k > kg, and T,V C T, Vi41 for k > ko, and
then define

T,V = limg>g, T Vi,

which is a vector space of countable dimension. A morphism ¢ : V — W induces
linear maps do, : T,V — Ty(,yW for every z € X. Clearly, for a k-vector space V/
of countable dimension and a for any v € V' we have T,V =V in a canonical way.

The product of two ind-varieties is defined in the obvious way. This allows to
give the following definition.

Definition 2. An ind-variety G is said to be an ind-group if the underlying set G
is a group such that the map G x G — G, taking (g,h) — gh™%, is a morphism.

Note that any closed subgroup H of G, i.e. H is a subgroup of G and is a closed
subset, is again an ind-group under the closed ind-subvariety structure on G. It is
clear that a closed subgroup H of an ind-group G is an algebraic group if and only
if H is an algebraic subset of G.

If G is an affine ind-group, then T, G has a natural structure of a Lie algebra which
will be denoted by Lie G. The structure is obtained by showing that every A € T.G
defines a unique left-invariant vector field 54 on G, see [Kum02, Proposition 4.2.2,
p. 114].

Definition 3. An ind-group G = |J, Gy is called discrete if Gy, is finite for all k.
Clearly, G is discrete if and only if Lie G is trivial.

The next result can be found in [St13] (see also [FK17]).
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Proposition 1. Let X be an affine variety. Then Aut(X) has a natural structure
of an affine ind-group.

Since Aut(X) has a structure of an ind-group for any affine variety X, we can
define a Lie algebra of Aut(X). It is not difficult to see that Lie Aut(X) can
be injectively embedded into the Lie algebra Vec(X) of vector fields on X: 1 :
Lie Aut(X) < Vec(X). In the future, we will always identify Lie Aut(X) with its
image in Vec(X). Note that Lie Aut(X) contains all locally nilpotent vector fields
because each such vector field v corresponds to a unipotent subgroup U C Aut(X),
U >=C" and v € LieU C LieAut(X). If U(X) C Aut(X) is a closed subgroup,
then similarly, Lie U(X) contains all locally nilpotent vector fields.

The next result which we will use in the future was pointed out to us by
HANSPETER KRAFT.

Proposition 2. Let ¢ : G — H be a homomorphism of ind-groups. Then ¢ induces
a homomorphism d¢. : Lie G — Lie H of Lie algebras.

3. AUTOMORPHISMS OF DANIELEWSKI SURFACE

Let p € CJ[t] be a polynomial of degree d > 2 with simple roots. Define the
DANIELEWSKI-surface D, C A? to be the zero set of the irreducible polynomial
zy — p(2):

Dy = {(,y,2) € A%Jzy — p(2)} C A”.

The following is easy (C :=C \ {0}):

(a) D, is smooth,

(b) the two projections m, : D, = C, (z,y,2) = xand 7w, : D, = C, (z,y,2) =y
are both smooth,

(c) (Dp)e =7, (C) 5 C x C, (2,9, 2) = (x,2) and similarly for ,,

(d) 7 1(0) is the disjoint union of d copies of the affine line C.

For the rest of this section we assume degp > 2 unless stated otherwise. For
every nonzero f € C[t] there is a C*-action af on C x C given by as(s)(z,z) :=
(z,z + f(z)), i.e. by translation with f(z) in the fiber of z € C. It is easy to see
that this action extends to an action on D, if and only if f(0) = 0. We denote the
corresponding actions on D, by a; r, respectively oy, . The explicit form is

ag.¢(s)(x,y,2) = (z,p(z + sf(x)), 2+ sf(x))

and similarly for o, s. The projection m, : D, — C is the quotient for all these
actions, and the action on 7=1(0) is trivial. Note that the corresponding vector
fields are given by

flz) 0

0
Vg, f 1= p/(2)787y + f(x)% and vy 5 == p'(2)

0 0
1 2+ 4.

Lemma 1. The map o : (tC[t])T — Aut(D,), f — au ¢(1), is a closed immersion
of ind-groups.

Proof. The map is obviously a homomorphism of ind-groups. If we denote by
p: Aut(Dp,) = O(D,) the map ¢ — ¢*(z), then this is a morphism of ind-varieties,
and the composition p o a, maps f € tC[t] to f(z) € Clz] C O(D,), hence is a
closed immersion. O
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Denote by U,,U, C Aut(D,) the image of o, and c,. Note that there is also
a faithful C*-action on D, given by t(z,y,2) := (tx,t"'y,z) which normalizes U,
and Uy. Denote by T' C Aut(D,) the image of C*. The following result is due to
Makar-Limanov.

Proposition 3. The group Aut(D,) is generated by Uy, Uy, T and a finite subgroup
F which normalizes (U,,U,,T).

Proposition 4. Aut(SLy /T) = U(SLs /T) X psa, where ps denotes a cyclic group
of order 2. In particular, Aut(SLy /T)° = U(SLy /T) is an ind-group.

Proof. By [DP09], SLy /T = D,,, where degp = 2. Note that for any two polynomi-
als p, ¢ € C[z] of degree 2 without multiple roots, we have D, = D,. It follows from
[Lam05, Theorem 6] that Aut(D,) is generated by C*-actions and cyclic subgroup
w2 of order 2 which permute roots {a, b} of p, i.e Aut(D,) = (U(D,), pi2). Because
U(D,) is normal subgroup of Aut(D,), we have Aut(D,) = U(D,) X uz. Then
U(D,) = {¢ € Aut(D,)|¢(a) = a, ¢(b) = b} is the closed subgroup of Aut(D,). O

We denote by Lie*® U(A2/us) the Lie subalgebra of Vec(A2/us) generated by
all locally nilpotent vector fields on A2 /.

Proof of Theorem 1. Assume there is an isomorphism ¢ : U(SLy /T) — U(A%/us)
of ind-groups. By Proposition 2 it induces an isomorphism d¢. : Lie U(SLq /T) —
LieU(A?/us) of Lie algebras, and because ¢ maps each closed unipotent sub-
group U = CT to ¢(U) = C*, d¢. induces an isomorphism of Lie algebras
Lie™® U(SLy /T) and Lie™® U(A2/us).

By Theorem 2, Lie™® U(SLy /T) is simple. On the other hand, we claim that
Lie™® U(A2/u5) is not simple. Indeed, since A2/juy has an isolated singular point
s, each vector field, which comes from an algebraic group action, vanishes at this
singular point. In particular, each locally nilpotent vector field vanishes at isolated
singular point. Because Lie®® U(A2/pu5) is generated by locally nilpotent vector
fields, each v € Lie™® U(A2/uy) vanishes at isolated singular point of A%/puy. Let
I C Lie™® U(A2/u3) be a Lie subalgebra generated by those vector fields which
vanish at isolated singular point with multiplicity & > 1. It is clear that I #
Lie™8 U (A2 /1) because x% € (Lie™® U(A%/ug) \ I). Moreover, it is clear that
[v,p] € I for any v € T and p € Lie*® U(A2/py) which shows that I is an ideal.
The claim follows. 0

4. MODULE OF DIFFERENTIALS AND VECTOR FIELDS

Since D, is smooth, the differentials (D,) and the vector fields Vec(D,) —
Hom(Q(D,), O(D,)) are locally free O(D,)-modules, and then, projective. More
precisely, we have the following description.

Proposition 5. (a) The module Q(D,) of differentials is projective of rank 2 and
is generated by dx, dy, dz, with the unique relation ydx + xdy — p'(2)dz = 0.
(b) The module Q*(D,) := A’ Q(D,) is free of rank one and is generated by

1 1 1
w:=—drANdz=—-dyNdz = /—dx/\dy.
x y p'(2)
Proof. (a) From above it is clear that Q(D,) is the projective module of rank 2 =
dim(D,). It is easy to see that Q(D,) = (O(D,)dx ® O(D,)dy & O(D,)dz)/(ydx +
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xdy — p'(2)dz), where ydx + xdy — p'(2)dz = d(xy — p(z)). In fact, the surface
D, is covered by the special open sets Dy, Dy, Dy(.) and Q(D,) is free module of
rank two over these open sets, generated by (dz,dz), by (dy, dz), and by (dz, dy),
respectively.

(b) The three expressions are well-defined in the special open sets Dy, D, Dy (2,
respectively, and the relation ydx + xdy — p’(2)dz = 0 implies that they coincide on
the intersections. Thus w is a nowhere vanishing section of Q?(D,,) and therefore,
Q2(D,) is free of rank 1 (see also [KK10, Section 3] for details). O

Remark 1. In fact, for any normal hypersurface X C A", Q" 1(X) := /\nf1 Q(X)
1s free of rank one.

Remark 2. Note that there is no § € Vec(D,) such that § : O(D,) — O(D,) is
surjective because Q(D,) is not free. Note also that w is unique up to a constant
because O(Dp)* = C*.

It is well-known that every vector field § on D,, C A3 extends to a vector field )
on C3. It follows that § can be written in the form

0= a3 + b2 + cﬁ
- 0x oy 02
where a, b, c € O(D),) such that ay + bz — ¢p’(2) = 0 in O(D,). In fact, considering
0 as a O(Dp)-linear map Q(D,) — O(D,), we have a = d(dx), b = 6(dy) and
¢ = 0(dz). This presentation of § is unique.

Remark 3. In fact, the vector fields Vec(D,) form a module over O(Dy) of rank
2, generated by

v '—a:g— 9 Vg 1= '(2)2—&—3Ué vy 1= /(2)£+ 9
2T ox yay’ w i =P Oy 92 VT PR, TV,

with the unique relation xv, — yv, = p'(2)vy.
The next result is clear.

Proposition 6. The sequence

0—C— O(D,) % d(D,) % dQ2(D,) — 0

15 exact.

5. VOLUME FORM AND DIVERGENCE.
For any 6 € Vec(D,,) we have the contraction
ig : QL 5 QF ig(n) (64, ..., 0k) = 1(6, 01, ..., 01).

In particular, for n € Q(D,), we have iy(n) = n(8) € O(D,), and so ig(df) = ;.

The vector field # € Vec(D,) acts on the differential forms Q(D,) by the Lie
derivative Ly := d 0 ig + ig o d, extending the action on O(D,). One finds (see for
details [KK10, Section 3])

Lo(f) =0f, Lo(df) = d(6f) and Lg(h-p) = Oh-p+h-Lop for f,h € O(Dy), 1 € QD).

Using the volume form w (see Proposition 5), this allows to define the divergence
div(0) of a vector field 6:

Low = d(igw) = div() - w.
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Lemma 2. (Hanspeter Kraft). Let 0 = a2 —l—ba% +c2 € Vee(D,). Then div() =
az + by +c..
Proof. We have igw = L(0(x)dz — 0(2))dz = L(adz — cdzx), hence

x

1
div(f) - w = d(igw) =d(—(adz — cdzx))
T
=—((xzda — adz) A dz — (zdc A dx).
T
Now we use the following equalities: da Adz = a5 -dx Adz +ay -dy Adz, de Ade =
ey -dr Ndy+cy-dx Ndz, dyNdz = y-w, and dz Ady = p/'(2) - w (see above) to get

/
div(0) = 4y Gy — yay +2 (2)
x x x

Cy t+Cz.
Since ya + zb — p'(z)c = 0 we have a + ya, + xb, — p'(2)c,y = 0, hence

P'(2)

a Yy
- T —ayt Cy = by,
r oz

and the claim follows. O

There is another important formula which relates the Lie structure of Vec(D))
with the Lie derivative (see also [KL13, Lemma 3.2]).

Lemma 3. For 61,02 € Vec(D,) and u € Q(D,) we have

i[9, 00014 = La, (i0,1t) — i0, (Lo, 1)

6. DuALITY.

The volume form w € Q?(D,,) induces the usual duality between vector fields and
differential forms: the O(D,)-isomorphism Vec(D,) = Q(D,) is given by 6 — ipw.
In particular, for every f € O(D,) we get a vector field vy € Vec(D)) defined by
i,w=df, ie df A\n=vs(n) w.

Denote by Vec” (D,) C Vec(D,) the subspace of volume preserving vector fields,
i.e. Vec’(D,) := {0 € Vec(D,)|div 8 = 0}.

Proposition 7. The map f — vy induces a C-linear isomorphism
O(D)/C = Vec’(D,).

Proof. Since d(ig) = div(f) - w, we have the following commutative diagram:

0 c —» o, —~ b, —1 Q*D,) —— 0
T: :TQ»—m‘gw ZThHh-w
O(Dy) —L— Vee(D,) — O(D,)
Now the claim follows because the first row is exact (see Proposition 6). O

The following result can be found in [KL13, Theorem 3.26].
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Proposition 8. Any vector field v € VecO(Dp) on the Danielewski surface D) is
a Lie combination of locally nilpotent vector fields if and only if its corresponding
function with i,w = df is of the form (modulo constant)

k !
(1) flz,y,2) = Z ajjr'z’ + Z bijy'2’ + (pq)'(2)
i=1,j=0 i=1,j=0
for a polynomial q € Clz]. Any f € O(D,) bijectively corresponds to some vy €
Vec’(D,) := Lie® U(D,) ® @?i%p_2 Czi(z - ya%).

The corresponding functions are given as follows (see [KL13, Lemma 3.1]):

$i+1 yi+1 ,
2 I3 = - i = q = .
@ fatve = =Tgs Fun, = e for = ((2)a(2)

We also recall the useful relation that describes the corresponding function of a
Lie bracket of two vector fields v, i € Lie*® U(D,) (see [KL13, Lemma 3.2]):

(3) f[V,u] = V(fu)a
where v(f,) is v applied as a derivation to the function f,,. The function f,, ,; may
also be calculated by the following formula (see [KL13, formula after Lemma 3.2]):

(4) fo ={fv: fu} = p/(z)((fV)yUu)w - (fV)w(fu)y)+
x((fu)Z(fu)w - (fu)w(fu)Z) - y((fV)Z(fu)y - (fV)y(fM)z)7
where the subindex denotes the partial derivative to the respective variable.
Let I C Lie*®U(D,) be a non-trivial ideal and let I be the set of functions
corresponding to this ideal by the correspondence in (1). Since I is an ideal, we
have, using (3), that

(5) {u el (@ e i) and p € LiealgU(Dp)} — v(f,), u(f,) el

The algebraic vector fields v i := ’(z)xiﬁ% +att L = (2)y 2yt

on the Danielewski surface D,, are called shear fields for all i € Ny, and the vector
fields v? := W (2)(z 2 — ya%) are called hyperbolic fields for all h € C[z].

Our next goal is to prove Theorem 2. We prove it in several steps and start with
the following Lemma.

Lemma 4. Let f be a regular function on D,. Then f can be written uniquely as

fz,y,2) = Zf:l a;(z)xt for some k,l € Z.

Proof. Let us take the form of f as in (1) and replace y by p(z)/z. This yields to

ai(z) = b;j(2)pi(z) for i € N. O
Choose I,k € Z such that a;,ar # 0 and denote by deg(f) = (I, k) the pair of

min- and max-degree in x.

Lemma 5. Let f € O(D,). Then v,(f) and vy(f) are never non-zero constants.

Proof. Any regular function f of D, can be written in the form Zi-c:l a;(z)x' by
Lemma 4. Then v,(f) = Y1, al(2)z+!, in particular, v,(f) is constant only if
a_1 is linear, which is not the case since a_; is divisible by p. The case of v, (f) is
analogous. 0

Lemma 6. Let deg f = (I,k) and I,k > 1. Then degvy(f)=(1—-1,k—1).
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Proof. Let f = Zf:l ai(z)x'. Then v,(f) = Ef:l(ip’(z)ai(z) + p(2)al(z))xi =t If
a;(z) # 0, then ip'(2)a;(z) + p(z)a;(z) # 0 and the claim follows. O

Lemma 7. Let deg f = (I, k), where k > 1> 0, then degvl(f) = ([, k), where | =1
ifl>1andl>1ifl=0.

Proof. Let f = Zf:z a;(z)x'. Then the claim follows from the equality v1(f) =
Efziip”(z)ai(z)xi. O

Proof of Theorem 2. Let I be a nontrivial ideal of Lie™® U(D,). Then there is a
nonzero f € I, and since v, is locally nilpotent, there is k& € N such that v(v*(f)) =
0, and then v*(f) € C[z] \ C. Therefore, there is g € I such that g € I and
degg = (I, k), where k,l > 1. By applying Lemma 6 and Lemma 7 step by step,
we will get that here is h € I such that degh = (0,0). Therefore, by Lemma 8,
q(z)z" € I for all ¢ € C[z] and n > 1.

Analogously, interchanging z and y, we get that ¢(z)y* € I for all ¢(z) € C[z] and
i € Ny. Since q(z)x € I for all ¢(z), also v,(q(2)z) = (p(2)q(2)) € I for all ¢(z), by
(4). Thus I contains all functions that correspond to vector fields in Lie*® U(D,)
or, equivalently, I = Lie™® U(D,), which concludes the proof. O

Lemma 8. Let h € I, h € C[z] \ C, then q(z)z"™ € I for all ¢ € C[z] and n > 1.

Proof. First we claim that there is an N € N such that q(%)x”“‘l e I for all
q € C[z] and n > N. By (5), we get that v;(h) = h'(2)z € I and vZ(h/(2)z) =
(p(2)s(z))"h (z)x € I for all s € C[z]. Let N = degp”’h’ and n > N. Then applying
(5) N — 1 times for v, we get

vy T H(p(2)s(2)) "W (2)2) = ((ps)")N 1 (2)2™ € L.
Now apply (5) once more for 2"~V

2" Ny (((ps)" W)V (2)2™) = ((ps) ") (N) ()2 € 1,

v, and get

and thus varying s(z) we get q(z)z"+* € I for all ¢ € C[z].
Hence

vy (") = ip (2) 2" 4 jp(2)d e e T
for all j € NU{0}. On the other hand, by the assumption z* € I, and thus by (2),
we have 2!y, € I. Hence, by (4),

2 (y?) = p(2) 22 4 gp(2) e e T

for all j € NU{0}. By taking suitable linear combinations of the above expressions
we see that z'~1 - (p/(z)) € I and 2*~' - (p(z)) C I, where (p/(2)) and (p(z)) denote
the ideal in Cl[z] generated by p’(z) and the ideal generated by p(z). Since p has
no simple roots by assumption, the ideal (p'(2),p(2)) generated by both p’(z) and
p(2) is equal to C[z] and thus z'~1 - (p/(2),p(z)) = 2"~ - C[z] C I. O
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