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Abstract

In dieser Masterarbeit untersuchen wir sogenannte Danielewski Ober�ächen Dp =
{(x, y, z) ∈ A3 | xy = p(z)} ⊆ A3 wobei A3 der a�ne 3-Raum und p ∈ C[z]
ein Polynom mit einfachen Nullstellen ist. Dabei zeigen wir, falls X eine normale
irreduzible a�ne Varität ist, so dass die Automorphismengruppe Aut(X) isomorph
zu Aut(Dp) ist, muss X isomorph zu Dq = {(x, y, z) ∈ A3 | xy = p(z)} ⊆ A3 sein,
wobei q ∈ C[z] ein Polynom mit möglicherweise mehrfache Nullstellen ist. Falls X
glatt ist und Aut(X) isomorph als eine Ind-Gruppe ist, so ist X isomorph zu Dp als
Varitäten.



Abstract

In this master thesis we study so-called Danielewski surfaces Dp = {(x, y, z) ∈ A3 |
xy = p(z)} ⊂ A3, where A3 is the a�ne 3-space and p ∈ C[z] is a polynomial with
simple roots. We show that if X is a normal irreducible a�ne variety such that
the group of automorphism Aut(X) is isomorphic to Aut(Dp), then X is isomorphic
to Dq = {(x, y, z) ∈ A3 | xy = q(z)} ⊂ A3, where q ∈ C[z] is a polynomial with
possibly multiple roots. Additionally, if X is smooth and Aut(X) is isomorphic to
Aut(Dp) as an ind-group, X is isomorphic to Dp as a variety.
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Nomenclature

Aut(X) automorphism group on X

O(X) C-algebra of regular functions on X

O(X)G set of all G-invariants on O(X)

codimX(Z) codimension of Z ⊆ X

deg p degree of the polynomial p

det(A) determinant of the matrix A

dim(X) dimension of the variety X

End(X) set of endomorphisms on X

∂f
∂xi

formal partial derivative of f by xi

GLn general linear group of n× n matrices

An a�ne n-space

C complex numbers

C[x] polynomial ring over the �eld C

C∗ multiplicative group of C \ {0}

C+ additive group of C

N natural numbers containing 0

N1 natural numbers not containing 0

Z all integers

Kdim(R) Krull dimension of R

Mor(X, Y ) set of morphisms from X to Y

C closure of C

I (Y ) vanishing ideal of Y ⊆ An

√
I radical ideal of the ideal I

SLn special linear group of n× n matrices
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StabG(x) stabilizer of x under G action

Z (S) zero set for S ⊆ C[x1, . . . , xn]

Dp Danielewski surface of polynomial p

G ∗H free product of G and H

G · x orbit of x under G action

GoH semidirect product of G and H

G×H direct product of G and H

G◦ connected component of the neutral element of G

p′(x) formal derivative of the polynomial p

xC[x]+ additive group of the polynomials xC[x]
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0 Introduction

In 1872, Felix Klein suggested in his famous Erlangen Programm to study geomet-
rical objects through their symmetries. In the spirit of this program it is natural to
ask to which extent a geometrical object is determined by its group of symmetries.
As an example, a smooth manifold, a symplectic manifold or a contact manifold is
determined by its group of symmetries, see [2], [20], [21]. In this thesis we study the
following question:

0.1 Question. To which extend is an irreducible a�ne algebraic variety determined
by its group of regular automorphisms?

Throughout this thesis we work over the �eld of complex numbers C and algebraic
varieties are always considered to be a�ne. For a variety X we denote by Aut(X)
the group of automorphisms ofX. As the automorphism group of a variety is usually
quite small, it almost never determines the variety. However, if Aut(X) is large, it
might do. A good example of an a�ne variety with a big automorphism group is
the so-called toric variety. More precisely, let T be the complex algebraic torus, i.e.
T ∼= (C∗)n, where C∗ is the multiplicative group of the base �eld C. A toric variety
X is a normal algebraic variety endowed with a regular and faithful action of T such
that T acts on X with an open orbit. The following result is proved in [18].

0.2 Theorem. Let X be an a�ne toric variety di�erent from the algebraic torus,
and let Y be a normal a�ne variety. If Aut(X) and Aut(Y ) are isomorphic as
abstract groups, then X and Y are isomorphic.

A similar result is unknown for normal a�ne irreducible surfaces with a big auto-
morhism group, i.e., those surfaces that admit actions of non-commuting C+-actions.
By [3, Theorem 3.3] any such surface is a quotient of a so-called Danielewski surface
Dp = {(x, y, z) ∈ A3 | xy = p(z)} ⊂ A3 for some polynomial p ∈ C[z] by a �nite
cyclic group. So, to prove a similar result to Theorem 0.2, we need �rst to charac-
terize a Danielewski surface by its group of automorphisms. Therefore, our guiding
question is the following.

0.3 Question. Let X be an a�ne irreducible variety such that Aut(X) is isomor-
phic to Aut(Dp). Are varieties X and Dp isomorphic?

We call a surface Dp generic if there is no a�ne automorphism of the a�ne line
C that permutes the roots of the polynomial p. For two generic surfaces Dp and
Dq with deg p ≥ 3 and deg q ≥ 3 there is an isomorphism Aut(Dp)

∼−→ Aut(Dq) of
abstract groups.

Indeed, in [12, Theorem and Remark (3) on p. 256] and more precisely in
[8, Theorem 2.7] it is shown that for a generic Danielewski surface Dp, we have
Aut(Dp) ' (C[x] ∗ C[y]) o (C∗ o Z/2Z) and the semidirect product structure does
not depend on p(z) (see also [9, Remark 7]). On the other hand, by [9, Theorem 3]
Aut(Dp) and Aut(Dq) are isomorphic as ind-groups, if and only if Dp is isomorphic
to Dq as a variety. In this thesis we prove the following results.
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Main Theorem (A). Let X be an a�ne irreducible normal variety and p ∈ C[z]
be a polynomial with simple roots. If ϕ : Aut(Dp) → Aut(X) is an isomorphism
of abstract groups and deg p 6= 2, then X is isomorphic to Dq for some polynomial
q ∈ C[z].

Main Theorem (B). Let X be a smooth and irreducible a�ne variety. If the auto-
morphism group Aut(X) is isomorphic to Aut(Dp) as an ind-group for a polynomial
p with simple roots, then X is isomorphic to Dp.

This thesis is organized as follows. In the �rst chapter we present basic results
about a�ne algebraic varieties, linear algebraic groups and action of such groups on
a�ne varieties. In the second chapter we introduce the notions of an ind-variety and
an ind-group. This notion is crucial for us as the automorphism group of an a�ne
variety has a natural structure of an ind-group (see Theorem 2.6). The last part of
the chapter two is devoted to the proof of Main Theorem A and Main Theorem B
in the case deg p ≤ 2.

In the third chapter we study the structure of the automorphism group Aut(Dp)
of a Danielewski surface Dp, where the degree of p ∈ C[z] is bigger than two and root
subgroups of Aut(Dp) (see Defnition 3.10). Moreover, we show that root subgroups
of Aut(Dp) are uniquely determined by their weights.

The last chapter is devoted to the proofs of Main Theorem A and Main Theo-
rem B. More precisely, we show that if X is an a�ne irreducible algebraic variety
and ϕ : Aut(Dp) → Aut(X) is an abstract group isomorphism, then the image of
a certain algebraic subgroup T ⊂ Aut(Dp) is an algebraic subgroup of Aut(X) iso-
morphic to C∗ (see Lemma 4.2). Moreover, root subgroups of Aut(Dp) with respect
to T are sent to root subgroups of Aut(X) with respect to ϕ(T ). Using [7, Lemma
5.2] this allows us to show that dimX = 2 (Theorem 4.10). We conclude the result
of Main Theorem A by applying [11, Theorem 1]. Main Theorem B follows from
Main Theorem A and [9, Theorem 3].

8



1 Preliminaries

1.1 The a�ne space and Zariski topology

For n ∈ N1 we de�ne An = Cn which is called the a�ne n-space. Before we de�ne
a�ne varieties, we �rst need to de�ne the topology on this space. We consider the
zero set for S ⊆ C[x1, . . . , xn] which is de�ned as

Z (S) = {P = (a1, . . . , an) ∈ An | f(P ) = 0 for all f ∈ S}.

With zero sets we can de�ne a topology on An, where Z (S) are closed subsets for
S ⊆ C[x1, . . . , xn]. De�ne an open subset as the complement of a closed subset.
This topology is called the Zariski topology, and we always use it in the context of
varieties.

Similar to the zero set we de�ne the vanishing ideal of a subset Y ⊆ An in the
following way :

I (Y ) = {f ∈ C[x1, . . . , xn] | f(P ) = 0 for all P ∈ Y }.

Let I be an ideal of C[x1, . . . , xn]. Then the radical ideal of I is

√
I := {r ∈ C[x1, . . . , xn] | ∃m ∈ N : rm ∈ I}.

1.1 Theorem (Hilbert's Nullstellensatz). If I ⊆ C[x1, . . . , xn] is an ideal, then
I (Z (I)) =

√
I.

Hilbert's Nullstellensatz shows that I and Z are bijections between the closed
subsets in An and the radical ideals of C[x1, . . . , xn].

The closure of C in a topological space X is denoted by C and is de�ned as the
intersection of all closed subsets A ⊆ X with C ⊆ A. It can be thought of as the
smallest closed subset that contains C. The set C is dense if C = X.

A topological spaceX is reducible, ifX = ∅ or ifX is the union of two proper closed
subsets. The space X is irreducible, if it is not reducible. A subset of a topological
space is called reducible, if it is reducible as a topological space with the induced
topology. Note that every non-empty open subset U of an irreducible topological
space is dense. This follows, because the closure of U and the complement of U
would otherwise form a decomposition of the irreducible space.

1.2 Example. For n ∈ N the a�ne n-space An with the Zariski topology is irre-
ducible. Let's suppose that it is reducible, say An = Y ∪Z where Y and Z are closed
subsets of An. Then Hilbert's Nullstellensatz gives us non-zero radical ideals I, J ,
such that Y = I (I) and Z = I (J). Then we have I (IJ) = An and in particular
the product of I and J is a subset of (0). This cannot be the case, because the
product of two non-zero ideals cannot be (0) in C[x1, . . . , xn].
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A topological space is called connected, if it cannot be written as the union of two
disjoint non-empty closed subsets. A subset C of a topological space X is called
connected if C is connected as the topological spaced endowed with the induced
topology from X. A maximal connected subset of X is called a connected component
of X.

1.3 Lemma. Connected components of a topological space are closed.

Proof. Let C be a connected component of a topological space X. If C is connected
we are done because C cannot be a proper subset of a connected subset of X.
Assume towards a contradiction that C is not connected. Then there exist closed
subsets U, V ⊆ X such that C = U ∪ V , C ∩ U ∩ V = ∅ and C is not a subset
of U nor of V . Since C is connected it has an empty intersection with either U or
V . Thus, C is a subset of U or V which are proper closed subsets of C. This is
a contradiction to the de�nition of C because C is the smallest closed subset of X
containing C.

Let X and Y be two topological spaces. A map f : X → Y is called continuous,
if the preimage of any open subset in Y is an open subset in X.

1.4 Lemma. Let f : X → Y be a continuous map between two topological spaces
X and Y . If C ⊆ X is connected, then the image f(C) ⊆ Y is connected as well.

Proof. Assume towards a contradiction that f(C) is not connected. Thus, there are
two non-empty closed subsets U, V ⊆ Y , with f(C) ⊆ U ∪V and U ∩V ∩ f(C) = ∅.
Consequently, f−1(U) and f−1(V ) are non-empty closed subsets of X such that
C∩f−1(U)∩f−1(V ) = ∅ and C ⊆ f−1(U)∪f−1(V ). This contradicts the assumption
that C is connected.

A topological space is called noetherian if every descending chain of closed subsets
Z1 ⊇ Z2 ⊇ . . . becomes stationary. This means, that there is an index s such that
Zs = Zs+i for all i > 0.

1.5 Lemma. Let Y be a non-empty closed subset of a noetherian topological space
X. Then it is possible to write Y as a �nite union of closed irreducible subsets, say
Y = Z1 ∪ · · · ∪ Zm, such that Zi * Zj whenever i 6= j. The collection of closed
irreducible sets {Z1, . . . , Zm} is uniquely determined by Y .

Proof. [15, Proposition 1.19] Our �rst goal is to show that every non-empty Y can
be written as a �nite union of closed irreducible subsets. We assume towards a
contradiction that this is not the case for some non-empty subsets. Let K be the
set of all non-empty closed subsets of X that cannot be written as a �nite union of
closed irreducible subsets. Since X is noetherian, K has a minimal element since
otherwise we would obtain a non-stationary descending chain. Let Y ′ ∈ K be one
of those minimal elements of K .

Because Y ′ is reducible, we can choose two proper closed subsets Y1 and Y2 that
satisfy Y ′ = Y1 ∪ Y2. These Y1 and Y2 cannot be in K and thus can be written as
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a �nite union of closed irreducible subsets. This implies, that the same holds for Y ′

and hence, K has to be the empty set.

Let Z1∪· · ·∪Zm be a decomposition of Y into closed irreducible subsets. Without
loss of generality, we can assume Zi * Zj for i 6= j, because we can omit those Zi
that are contained in some Zj with i 6= j.

Now suppose that we have Y = Z1 ∪ · · · ∪ Zm = Z ′1 ∪ · · · ∪ Z ′n, where all Z ′i ⊆ Y
are closed and irreducible. For i ∈ {1, . . . ,m} we have Zi =

⋃n
j=1(Zi ∩ Z ′j). Since

Zi is irreducible, it cannot be the �nite union of more than one closed subsets.
Thus, there exists ν(i) ∈ {1, . . . , n} with Zi ⊆ Z ′ν(i). Similarly, we can do the same

construction for j ∈ {1, . . . , n} and obtain µ(j) ∈ {1, . . . ,m}, such that Z ′j ⊆ Zµ(j).
Thus, Zi ⊆ Zµ(ν(i)) which implies i = µ(ν(i)). Similarly, we have j = ν(µ(j)) for
all j ∈ {1, . . . n}. This implies, that m = n that µ and ν are mutually inverse
permutations of {1, . . . , n}, and that Zi = Zν(i) for all i. So up to permutation of
the indices, the two decompositions are the same.

A ring R is called noetherian, if every ascending chain of ideals I1 ⊆ I2 ⊆ . . .
becomes stationary, i.e. there exists s ∈ N such that Is = Is+1 = . . . .

1.6 Theorem (Hilbert's basis theorem). Let R be a noetherian ring. Then R[x] is
noetherian.

1.7 Remark. Hilbert's basis theorem shows that C[x1, . . . , xn] is noetherian. By
Hilbert's Nullstellensatz radical ideals of C[x1, . . . , xn] correspond to closed subsets
in An. Hence, the Zariski topology on An is notherian because we can translate an
increasing chain of radical ideas into a decreasing chain of closed subsets. Thus,
every closed subset of An can be written as a union of �nitely many closed irre-
ducible subsets by Lemma 1.5. It is further possible using Theorem 1.6 to show
that every closed subset of An can be written as Z (S), where S is a �nite subset of
C[x1, . . . , xn].

1.2 A�ne varieties

1.8 De�nition. An a�ne variety is a closed subset of An for some n ∈ N1. A
quasi-a�ne variety is a non-empty open subset of an a�ne variety. A closed subset
of a quasi-a�ne X variety is called a closed subvariety of X and has the induced
topology of the quasi-a�ne variety X.

1.9 Example. Let p ∈ C[z] be a polynomial. The Danielewski surface Dp is de�ned
as {(x, y, z) ∈ A3 | xy = p(z)}. It is obvious, that Dp is an a�ne variety, because it
is the set I (xy − p(z)) ⊆ A3.

A subset of an a�ne variety is called locally closed, if it is the intersection of a
closed and an open subset. If a subset of an a�ne variety is the �nite union of
locally closed subsets, it is called constructible.
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1.10 Remark. (1) Finite union, �nite intersection and complement of constructible
sets are again constructible.
(2) At the beginning of [5, Section 4.4] it is noticed, that if a subset S of an a�ne
variety X is constructible, then S contains a set U which is open and dense in S.

1.11 De�nition. Let R be a ring and R′ an R-module. An element a ∈ R′ is said
to be integral over R, if it is the root of a monic polynomial in R[x], i.e.

an + r1a
n−1 + · · ·+ rn = 0, where r1, . . . , rn ∈ R.

We say that R′ is integral over R, if every element a ∈ R′ is integral over R. If no
element x ∈ R′ \R is integral over R, R is called integrally closed in R′.

1.12 Remark. Let R be a ring and R′ an R-module. It can be shown that a ∈ R′
is integral over R, if and only if R[a] is �nitely generated R-module.

An a�ne variety X is normal if the coordinate ring C[x1, . . . , xn]/I (X) is inte-
grally closed in its �eld of fractions. Here the �eld of fractions of a ring means the
smallest �eld, that contains the ring.

1.13 Example. (1) The a�ne space An is normal. This follows, because its coor-
dinate ring is isomorphic to C[x1, . . . , xn] which is integrally closed in C(x1, . . . , xn).
(2) The curve de�ned by {(x, y) ∈ A2 | y2 = x3} is not normal. This follows since
C[x, y]/(y2− x3) ∼= C[t2, t3] and the �eld of fractions of C[t2, t3] is C(t). Thus, there
is t ∈ C(t) \ C[t2, t3] which is integral over C[t2, t3].

Let Y ⊆ An be a quasi-a�ne variety. A function f : Y → C is called regular at
point P ∈ Y , if there is an open subset U ⊆ Y that contains P and polynomials
g, h ∈ C[x1, . . . , xn] with h 6= 0 on U , such that f|U = g/h as functions on U . A
function f : Y → C is called regular, if f is regular at all points of Y . We denote
the C-algebra of regular functions on Y by O(Y ).

1.14 Lemma. Let X be a quasi-a�ne variety. If f and g are regular functions on
X that restrict to the same function on a dense subset D ⊆ X then f = g.

Proof. [15, Lemma 2.2 ii)] The set Z = {P ∈ X | f(P ) = g(P )} is the preimage of
{0} ⊆ C under the regular function g − f : X → C. Because {0} ⊆ C is a closed
subset, Z is closed as well. Since D is a subset of Z which is dense in X, we have
X = D ⊆ Z. Thus, g − f has to be the constant zero function and in particular
g = f .

In [5, Section 1.5] it is noted that the C-algebra of regular functions O(X) of an
a�ne variety X is isomorphic to C[x1, . . . , xn]/I (X). Note that by Remark 1.7
I (X) can always be written as an ideal generated by �nitely many functions from
C[x1, . . . , xn].

Let X and Y be two quasi-a�ne varieties. Then a morphism from X to Y is a
continuous map ϕ : X → Y such that for every open subset U ⊆ Y and every regular
function f ∈ O(U), the function f ◦ ϕ : ϕ−1(U)→ C is regular on ϕ−1(U) ⊆ X.
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A morphism is called an isomorphism, if the inverse map is still a morphism.
If there exists an isomorphism between two varieties, they are called isomorphic.
An isomorphism from a variety to itself is called an automorphism. The set of
all automorphisms of a variety X is denoted by Aut(X) and equipped with the
composition, it has the structure of a group.

1.15 Remark. (1) Let ϕ : X → Y be a morphism. Then we can get a homomor-
phism of C-algebras by

ϕ∗ : O(X)→ O(Y ), f 7→ f ◦ ϕ.

(2) Let C ⊆ Y be a locally closed subset. Since the preimages of open and closed
subsets under a morphism are open and closed respectfully, f−1(C) is locally closed.
(3) De�ne ϕ : A2 → A2, (x, y) 7→ (x, xy). Note that this is a morphism. The image
Im(ϕ) = A2 \ {(0, c) | c 6= 0} is not locally closed in A2. This follows, because
A2 \ {(0, c) | c 6= 0} is not open and has the closure A2.

1.16 Theorem (Chevalley's Theorem). If ϕ : X → Y is a morphism of a�ne
varieties, then the image of a constructible subset is constructible.

We use the following lemma in the proof of Lemma 3.11.

1.17 Lemma. The C-algebra O(C∗) is isomorphic to C[t, t−1] in a variable t.

Proof. The variety C∗ = C \ {0} is isomorphic to Y := Z (xy − 1) ⊆ C2. Indeed,
Y = {(x, x−1 | x ∈ C∗} and the map f : C∗ → Y, x 7→ (x, x−1) is a morphism.
Moreover, the inverse map g : Y → C∗, (x, x−1) 7→ x is a morphism. Therefore, Y is
isomorphic to C∗ and thus O(C∗) = O(Z (xy−1)) = C[x, y]/(xy−1) ∼= C[t, t−1].

1.3 Dimension of a�ne varieties

1.18 De�nition. The dimension of a non-empty topological space X is the supre-
mum of the integers r for which there exists a chain Z0 ( Z1 ( · · · ( Zr of closed
irreducible subsets. If the chain can be arbitrarily long, we say that dim(X) = ∞.
Let n ∈ N. Then the n-dimensional torus is de�ned as (C∗)n.

The height ht(p) of a prime ideal p is the supremum of integers, such that there
exists a chain of prime ideals

p0 ( p1 ( · · · ( pr = p

ending in p. The Krull dimension of a commutative ring R is the supremum of the
heights of prime ideals in R. If there exists arbitrary long chains of prime ideals,
we say that the height is in�nite. We denote the Krull dimension of a ring R by
Kdim(R).

1.19 Remark. (1) If a ring is noetherian, every prime ideal of this ring has a �nite
height.
(2) There is only one prime ideal in a �eld. Thus, each �eld has Krull dimension 0.
(3) There is an example of a noetherian ring which has in�nite Krull dimension.
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1.20 Example. There exists a noetherian topological space of in�nite dimension.
Indeed, let X = N and de�ne the closed subsets of X by Yn := {0, . . . , n} for n ∈ N.
This topological space is obviously noetherian, because every chain can at most
have length n. But the chains can become arbitrary long, thus the dimension of X
is in�nite.

Before we state further lemmas about the dimension of a variety, we recall prop-
erties of the Krull dimension.

1.21 Theorem. If R is a noetherian ring, then Kdim(R[x]) = Kdim(R) + 1.

Proof. This is proven in [1, solution of Exercise 21.40].

Since C is a �eld, the Krull dimension of C is 0. Thus Kdim(C[x1, . . . , xn]) = n.
Recall that prime ideals in C[x1, . . . , xn] correspond to closed irreducible subsets of
An. Thus, the Krull dimension of C[x1, . . . , xn] coincides with the dimension of the
a�ne space An endowed with the Zariski topology.

1.22 Lemma. Let R be an �nitely generated C-algebra without zero divisors.

(1) The Krull dimension of R is �nite.

(2) Let I = (a1, . . . , ar) be an ideal generated by r elements. If p is a minimal
prime ideal that contains I, we have ht(p) ≤ r.

(3) If q ⊆ p are prime ideals of R and

q = p0 ( p1 ( · · · ( pr = p

is any maximal chain of prime ideals from q to p, we have r = ht(p)− ht(q).

Proof. (1) is proven in [1, Theorem 21.4], (2) is proven in [1, Corollary 21.7] and (3)
is proven in [1, solution of Exercise 21.27].

The results from the lemma above can be geometrically translated into the fol-
lowing statement.

1.23 Lemma. Let Z, Y be non-empty irreducible a�ne varieties.

(1) The dimension of Z is �nite.

(2) If the ideal I (Y ) ⊆ C[x1, . . . , xn] can be generated by r elements, we have
dim(Y ) ≥ n− r.

(3) If Z ⊆ Y and Z = Z0 ( Z1 ( · · · ( Zr = Y is any maximal chain of closed
irreducible subvarieties, we have r = dim(Y )− dim(Z).

The number r in Lemma 1.23 (3) is the codimension of Z in Y and denoted by
codimY (Z).
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1.24 Remark. For an a�ne variety X and a point a ∈ X we obtain the following:

codimX{a} = max{dimXi : a ∈ Xi},

where the Xi are the irreducible components of X.

1.25 Lemma. Let X be an irreducible a�ne variety of dimension 1. Then a proper
closed subset is �nite.

Proof. Let C be a proper closed subset of X. By Lemma 1.5 we know that C is the
union of �nitely many closed irreducible subsets of C. Since X has dimension one,
all proper closed irreducible subsets must be of dimension 0, i.e. are single points.
Thus, C is the union of �nitely many points.

Let f ∈ C[x1, . . . , xn]. We denote by ∂f
∂xi

the formal partial derivative of f by xi.

1.26 De�nition. Let X ⊆ An be an a�ne variety with I (X) = (f1, . . . , fr) and
let a ∈ X be a point. We call a ∈ X smooth, if the rank of the matrix(

∂fi
∂xj

(a)

)
i,j

is at least n− codimX{a}. We call X smooth, if all points x ∈ X are smooth.

1.27 Lemma. Let p be a polynomial in one variable. Then Dp is smooth if and
only if p has simple roots, i.e. all its roots are di�erent from each other.

Proof. By de�nition we have I (Dp) = (xy − p(z)) and Dp ⊆ A3. Thus, we have
the following matrix((

∂(xy − p(z))

∂x

)
,

(
∂(xy − p(z))

∂y

)
,

(
∂(xy − p(z))

∂z

))
= (y, x,−p′(z)).

This implies that only the points of Dp that ful�ll xy−p(z) = y = x = p′(z) = 0 are
not smooth. If p has simple roots, the system p(z) = p′(z) = 0 has no solution and
Dp is smooth. If p has not only simple roots, there is z0 ∈ Dp with p(z0) = p′(z0) = 0
and (0, 0, z0) ∈ Dp is not smooth.

1.28 Remark. It can be shown [15, Theorem 2.8] that every smooth a�ne variety
is a normal a�ne variety.

1.4 A�ne algebraic groups

1.29 De�nition. An a�ne algebraic group is an a�ne variety G that is equipped
with the structure of a group such that the inverse map i : G → G, g 7→ g−1 and
the group multiplication m : G × G → G, (g, h) 7→ g · h are morphisms. A closed
subgroup H of G is an algebraic subgroup with the induced topology of G.
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1.30 Example. (1) Two important algebraic groups are C+ which is the additive
group of the �eld C, and C∗ which is the multiplicative group of the �eld C.
(2) An algebraic torus is an a�ne algebraic group that is isomorphic to (C∗)n, where
n ∈ N.

1.31 Lemma. The automorphism group of C+ is isomorphic to C∗.

Proof. Let ϕ be an automorphism of C+. First, we consider the image of 1 which we
denote by c. This c has to be from C∗, because ϕ would not be injective otherwise.

Every k ∈ N can be written as 1 + · · · + 1 and thus ϕ(k) = ϕ(1 + · · · + 1) = ck.
By Lemma 1.25, N is a dense subset of C+, because it is an in�nite subset of the
one-dimensional variety C+. By Lemma 1.14 we obtain our claim, because ϕ and
f : C+ → C+, x 7→ cx coincide on the dense subset N ⊆ C+.

1.32 Theorem. Let G be an irreducible a�ne algebraic group of dimension 1. Then
G is isomorphic to C+ or to C∗.

Proof. This is proven in [5, Theorem in Chapter 20.5].

Further examples of linear algebraic groups include the group of all invertible
n× n-matrices GLn and the group of all n× n-matrices of GLn with determinant 1
SLn.

1.33 Lemma. The general linear group GLn and the special linear group SLn are
a�ne algebraic groups.

Proof. The �rst step is to show that both GLn and SLn are a�ne varieties. Consider
�rst the closed subset S = {(A, t) ∈ Matn×n×A1 | det(A) · t = 1} ⊆ Matn×n×A1

where det(A) is a regular function in O(Matn×n). Now the projection onto the �rst
coordinate S → GLn, (A, t) 7→ A gives an isomorphism of S and GLn since the
inverse map is a morphism. Thus, GLn ∼= Z (det(A)t− 1) ⊆ Matn×n×A1 ∼= A2n+1.

Similarly SLn = {A ∈ Matn×n ∼= An2 | det(A) = 1} ⊆ Matn×n is a closed subset.

The multiplication of two matrices in Matn×n is given by regular functions on
Matn×n. The inverse for a matrix A ∈ GLn is equal to det(A)−1 times the adjoint
matrix. Indeed det(A)−1 ∈ O(Matn×n) and the map Matn×n → Matn×n which sends
a matrix to its adjoint matrix is a morphism. Hence, the map GLn → GLn, A 7→ A−1

is also a morphism. The proof follows.

1.34 De�nition. Let G be a group. An element g ∈ G is called divisible if for each
n ∈ N1 there exists h ∈ G such that g = hn.

1.35 Example. (1) Every element g ∈ C∗ is divisible, because g = hn has a solution
in C \ {0} for each n ∈ N1.
(2) No non-trivial element in a �nite group is divisible. This follows, because each
element to the power of the group order is 1.
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Consider the quotient SL2 /T of the group SL2 by the torus

T :=

{(
t 0
0 t−1

)
| t ∈ C∗

}
.

For the equivalence classes in SL2 /T we use the notation[(
a b
c d

)]
=

{(
a b
c d

)
·
(

t 0
0 t−1

)
| t ∈ C∗

}
.

We now consider the structure of SL2 /T . Recall that two elements A,B ∈ SL2

are in the same equivalence class if there exists t ∈ T such that A = Bt. Let
A := {(ab, cd, ad) ∈ A3 | a, b, c, d ∈ C and ad− cb = 1} and

π : SL2 /T → A,
[(

a b
c d

)]
7→ (ab, cd, ad).

To check if this map is well de�ned, we show π(A) = π(At) for all A ∈ SL2 and

t ∈ T . Let A =

(
a b
c d

)
∈ SL2 and t =

(
t 0
0 t−1

)
∈ T , then we have

π(At) = π

(
ta t−1b
tc t−1d

)
= (tat−1b, tct−1d, tat−1d) = (ab, cd, ad) = π(A).

Thus, π is well de�ned. Since (ab, cd, ad) ∈ A has the preimage

[(
a b
c d

)]
the

map π is surjective. Now we check if π is injective. Let A =

[(
a b
c d

)]
and

A′ =

[(
a′ b′

c′ d′

)]
such that (ab, cd, ad) = π(A) = π(A′) = (a′b′, c′d′, a′d′).

Assume a 6= 0 and a′ 6= 0 �rst. Then there is z ∈ C∗ with a = za′. Thus, b = z−1b′

and d = z−1d′ because ab = a′b′ and ad = a′d′. Moreover,

ad− cb = 1 = a′d′ − c′b′ ⇔ za′z−1d′ − cz−1b′ = a′d′ − c′b′ ⇔ c = z−1c′.

Thus,

(
a b
c d

)
=

(
a′ b′

c′ d′

)
·
(
z 0
0 z−1

)
.

Now assume a = a′ = 0. Then c, c′ ∈ C∗ since ad− cb = 1 = a′d′ − c′b′. Thus, there
exists z ∈ C∗ with c = zc′. Moreover, d = z−1d′ because cd = c′d′. This means
that

ad− cb = 1 = a′d′ − c′b′ a=a
′=0⇔ cb = c′b′ ⇔ zc′b = c′b′ ⇔ b = z−1b′.

Moreover,

(
a b
c d

)
=

(
a′ b′

c′ d′

)
·
(
z 0
0 z−1

)
.

Finally, we assume a ∈ C∗ and a′ = 0 which is analogous to a′ ∈ C∗ and a = 0.
Then we have b = 0 because ab = a′b′. Thus, in particular ad = 1. This gives us a
contradiction because ad = 1 6= 0 = a′d′.
This shows that if (ab, cd, ad) = (a′b′, c′d′, a′d′) we have A = A′ and π is injective.
Thus, we have the following description for the elements in SL2 /T :

{(ab, cd, ad) ∈ A3 | a, b, c, d ∈ C and ad− cb = 1}. (1)
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1.36 Lemma. Let p = z2−z. Then the two varietiesDp and SL2 /T are isomorphic.

Proof. By (1), SL2 /T is isomorphic to X = {(ab, cd, ad) ∈ A3 | a, b, c, d ∈ C, ad −
cb = 1}. Thus, we show that X is isomorphic to {(x, y, z) ∈ A3 | xy = z2 − z}. Let
(ab, cd, ad) ∈ X, then we have

xy = (ab)(cd) = (ad)(cb) = (ad)(ad− 1) = (ad)2 − (ad) = z2 − z,

because ad− cb = 1⇔ cb = ad− 1. Thus, the map X → Dp, (ab, cd, ad) 7→ (x, y, z)
is an isomorphism of varieties.

A regular group action of an a�ne algebraic group G on an a�ne variety S is a
morphism of a�ne varieties G×S → S which satis�es 1 ·s = s and (gh) ·s = g ·(h ·s)
for all g, h ∈ G and s ∈ S. The orbit of s ∈ S is the set G · s = {g · s | g ∈ G} ⊆ S.
The stabilizer of an element s ∈ S is de�ned as StabG(s) := {g ∈ G | g · s = s}.
The action is called trivial, if the stabilizer of every element is the entire group. An
action is faithful if for each two elements h, g ∈ G there exists x ∈ S, such that
h · x 6= g · x. We call an action free if h · x = g · x for x ∈ X and g, h ∈ G always
implies h = g.

1.37 Example. Let H,G be two algebraic subgroups of an algebraic group K.
Then we de�ne the conjugation of h ∈ H with g ∈ G as ghg−1. This is a morphism
and if gHg−1 := {ghg−1 | h ∈ H} ⊆ H, it is a group action. In this case we say
that H is normalized by G.

1.38 De�nition. Let X be an a�ne variety of dimension n. We call X toric, if
T ∼= (C∗)n acts non-trivially, faithfully and regularly on X.

1.39 Lemma. Let G be an a�ne algebraic group that acts regularly on an a�ne
variety S. For s ∈ S it follows that

G · s ∼= G/ StabG(s)

as quasi-a�ne varieties.

Proof. This is proven in [13, Corollary 7.13].

In the last part of this section we closely follow [14].

1.40 Lemma. Let U and V be open dense subsets of an algebraic group G. Then
G = U · V .

Proof. Let x ∈ G. Then x · V −1 := {xv−1 | v ∈ V } and U are dense and open
subsets of G. If the intersection of x · V −1 and U is empty, the subset U ⊆ G would
be a subset of the complement of x · V −1. This is a contradiction because the dense
subset U cannot be a subset of a proper closed subset G \X · V −1. Thus, X · V −1
and U have a non-empty intersection, i.e. xv−1 = u for some v ∈ V, u ∈ U . So x can
be written as the product of an element of V and U , and in particular x ∈ U ·V .
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1.41 Lemma. Let H ≤ G be a subgroup of an algebraic group G. Then

(1) if H is constructible, then H coincides with its closure H,

(2) if H contains a dense open subset of its closure H, then H = H,

(3) if H is locally closed, then it is closed.

Proof. First we consider (1) and (2). By Remark 1.10 a constructible subset H ≤ G
contains a subset U which is dense and open in H. Then H is open in H, because
it is the union of

⋃
h∈H h · U , where h · U ⊆ H are open. Hence, by Lemma 1.40

H = H ·H = H. (3) directly follows from (2).

1.42 Lemma. Let G be an algebraic group which acts regularly on an a�ne variety
X. Then, the orbit G · x is a locally closed subvariety of X. Moreover, the closure
G · x is the union of G · x and of orbits of strictly smaller dimension. Any orbit of
minimal dimension in G · x is closed, in particular, the closure G · x of G ·x contains
a closed orbit.

Proof. Consider the map
ρx : G→ X, g 7→ g · x.

This map is a morphism and by Theorem 1.16 the image Im(ρx) = G · x is a
constructible subset of X. By Remark 1.10 there exists a subset U ⊆ G · x which is
open and dense in G · x. Since G acts transitively on G ·x, the set G ·x =

⋃
g∈G g ·U

is open in G · x. Thus, G · x ⊆ X is locally closed.

Since G · x is dense open subset of G · x we have that G · x \G · x has dimension
strictly smaller thanG · x. Furthermore, G · x is aG-subvariety ofX, thusG · x\G·x
is a union of orbits of G.

Finally, we have to prove that any G-orbit O of minimal dimension in G · x is
closed. Assume that there is one that is not closed. Then the closure O ⊆ G · x
contains an orbit of smaller dimension which is a contradiction.

1.43 De�nition. An element g of an algebraic group G is called unipotent, if the
closure of the group generated by g is isomorphic to the additive group C+. An
algebraic group G is called unipotent, if each element of G is unipotent.

If a group G is itself isomorphic to C+, it is obviously unipotent.

1.44 Theorem. A unipotent group G acts on an a�ne variety X with closed orbits,
i.e. a G-orbit of an element x ∈ X is closed in X.

Proof. This is proven in [19, Theorem 2].
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2 Ind-varieties and ind-groups

The notion of an ind-group goes back to Shafarevich [22], who calls these objects
in�nite dimensional algebraic groups. An automorphism group Aut(X) of an a�ne
variety X has a natural structure of an ind-group (see Theorem 2.6). Our �rst step
is to consider ind-varieties.

2.1 De�nition. An ind-variety is a set V together with an ascending �ltration
V0 ⊆ V1 ⊆ . . . ⊆ V for which the following must be satis�ed:

(1) V =
⋃
k∈N Vk;

(2) each Vk has the structure of an a�ne variety;

(3) for all k ∈ N the subset Vk ⊆ Vk+1 is closed in the Zariski topology.

A morphism between ind-varieties V =
⋃
k Vk and W =

⋃
kWk is a map φ : V →

W such that for each k there is l ∈ N, such that φ(Vk) ⊆ Wl and such that the
induced map Vk → Wl is a morphism of algebraic varieties. A morphism is called an
isomorphism of ind-varieties if it has an inverse map that is an morphism as well.

An ind-variety V =
⋃
k Vk has a natural topology: S ⊆ V is closed, respectively

open, if Sk := S ∩ Vk ⊆ Vk is closed respectively open for all k. Obviously, a
closed subset S ⊆ V has the natural structure of an ind-variety which is called an
ind-subvariety.

Let G be an ind-variety with the �ltration
⋃
iGi. Then the direct product G×G

has the �ltration
⋃
i(Gi ×Gi) because Gi ×Gi ⊆ Gi+1 ×Gi+1 is closed.

2.2 De�nition. An ind-variety G is called an ind-group if the underlying set G is
a group and the map G×G→ G, (g, h) 7→ gh−1 is a morphism of ind-varieties.

For an ind-group G, we can also consider subgroups H of G. If H is closed, H is
an ind-group under the ind-subvariety structure on G as well. Similar to varieties,
a closed subgroup H of an ind-group G is called an algebraic subgroup, if H is an
algebraic subset of G. That is, H is a closed subset of some Gi, where G1 ⊆ G2 ⊆ . . .
is a �ltration of G. In this thesis, we consider an endomorphism f ∈ End(An) as

f : An → An, (a1, . . . , an) 7→ (f1(a1, . . . , an), . . . , fn(a1, . . . , an)),

where f1, . . . , fn ∈ C[x1, . . . , xn]. Hence, we use the notation f = (f1, . . . , fn).

2.3 Example. (1) The set End(An) of the endomorphisms of An has the structure
of an ind-variety. The �ltration can be given by vector spaces

End(An)d = {f = (f1, . . . , fn) ∈ End(An) | deg f := max
i
fi ≤ d}.

(2) One can prove that Aut(An) with the following �ltration
⋃
d(Aut(An)∩End(An)d)

is an ind-group (see [4]).
(3) Let V be a C-vector space of countable dimension. Then we can choose a �ltra-
tion V1 ⊆ V2 ⊆ . . . of �nite dimensional subspaces. This gives us the structure of
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an ind-variety on V . Note that two �ltrations by �nite dimensional subspaces of V
are always equivalent.

With those examples, we consider more general constructions.

2.4 Lemma (Stamp�i). LetX and Y be a�ne varieties. Then the set of morphisms
Mor(X, Y ) has a canonical structure of an ind-variety.

Proof. [23, Lemma 3.8] Let n ∈ N such that Y ⊆ An. Note that Mor(X,An) has
only a countable dimension as a C-vector space. Thus, it has the structure of an
ind-variety by the same construction as in Example 2.3 (3). It follows, that

Mor(X, Y ) = {f ∈ Mor(X,An) | ϕ ◦ f = 0 for all ϕ ∈ I (Y )} =
⋂

ϕ∈I (Y )

h−1ϕ ({0})

with hϕ : Mor(X,An) → O(X), f 7→ ϕ ◦ f is closed in Mor(X,An) and thus it has
the structure of an ind-variety.

We consider the following lemma about sets of morphisms which we use to show
that Aut(X) has the structure of an ind-variety for an a�ne variety X.

2.5 Lemma. Let X, Y and Z be a�ne varieties. Then we have a bijection

Mor(X × Y, Z)→ Mor(X,Mor(Y, Z)), f 7→ (x 7→ (y 7→ f(x, y))).

In fact, the bijection is an isomorphism of ind-varieties.

Proof. The given map is a bijection, because we have the inverse map

Mor(X,Mor(Y, Z))→ Mor(X × Y, Z), g 7→ ((x, y) 7→ g(x)(y)).

The bijection is an isomorphism which follows by its structure.

Now we are ready to prove the main statement of the current chapter.

2.6 Theorem (Stamp�i). Let X be an a�ne variety. Then Aut(X) has the struc-
ture of an ind-group such that for any algebraic group G, the G-action on X corre-
sponds to the ind-group homomorphism G→ Aut(X).

Proof. [23, Proposition 3.7] Let n ∈ N such that X ⊆ An. Next we consider the
canonical C-linear projection p : End(An) → Mor(X,An). Thus, a �ltration of
Mor(X,An) is p(End(An)d) with the notation from Example 2.3. Set End(X)i :=
End(X)∩p(End(An)i). This means that End(X) is an ind-variety with the �ltration
End(X)i. From the construction we see that

End(X)× End(X)→ End(X), (f, g) 7→ f ◦ g

is a morphism because for any f, g ∈ End(X)i there exists m ∈ N such that f ◦ g ∈
End(X)m.
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The set

Aut(X) = {(f, g) ∈ End(X)× End(X) | f ◦ g = g ◦ f = id}

is closed in End(X)× End(X) and it has the structure of an ind-variety. Since the
composition in End(X) is a morphism we consider

Aut(X)× Aut(X)→ Aut(X), ((f1, h1), (f2, h2)) 7→ (f1 ◦ f2, h1 ◦ h2),

which is a morphism as well. The inverse map is

Aut(X)→ Aut(X), (f, h) 7→ (h, f),

which is a morphism, too. Thus, Aut(X) is an ind-group.

Let G be an algebraic group that acts on X via a morphism ρ : G×X → X. Then
the map ρg : X → X, x 7→ ρ(g, x) is an endomorphism onX. By Lemma 2.5 the map
G→ End(X), g 7→ ρg is a morphism. Hence G→ End(X)× End(X), g 7→ (ρg, ρ

−1
g )

is a morphism. We obtain a homomorphism of G→ Aut(X) by the construction of
Aut(X) from End(X)× End(X).

Conversely, let G→ Aut(X) be a homomorphism of ind-groups. Then

G→ Aut(X) ⊆ End(X)× End(X)→ End(X)

is a morphism, since End(X) × End(X) → End(X) is the projection onto the �rst
coordinate. Thus G×X is a G-action by Lemma 2.5.

In Theorem 2.6, we viewed elements from Aut(X) as

{(f, g) ∈ End(X)× End(X) | f ◦ g = g ◦ f = id}.

This is isomorphic to Aut(X) = {f ∈ Mor(X,X) | f : X → X is an automorphism}
by the projection onto the �rst coordinate.
Now we prove other properties of ind-groups which we use in the last chapter of this
thesis.

2.7 Lemma. Let G be an ind-group that acts on an ind-variety X. Then the
stabilizer StabG(x) of x ∈ X is a closed subset in G.

Proof. Let ρ : G × X → X be the G-action on X. Then we de�ne ρx : G → X
given by g 7→ ρ(g, x). This map is a morphism because ρx = pr1(ρ|G×{x}) with pr1
the projection onto the �rst coordinate and ρ|G×{x} the restricted of ρ to G × {x}.
Now consider ρ−1x (x) = {g ∈ G | ρ(g, x) = x} = StabG(x). This set has to be closed,
because it is the preimage of the closed subset {x} ⊆ X.

2.8 Corollary. Let H ⊆ G be an ind-subgroup of an ind-group G. Then the
centralizer, i.e. the set {g ∈ G | ∀h ∈ H : ghg−1 = h}, is a closed subset in G.
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Proof. Let the ind-group G act on the ind-variety G by conjugation. Then we
observe that the stabilizer

⋂
h∈H StabG(h) and the centralizer of H coincide. By

Lemma 2.7 the stabilizer StabG(h) is closed and thus the centralizer has to be closed
as well.

2.9 Lemma. Let X and Y be a�ne varieties, let ϕ : Aut(X) → Aut(Y ) an iso-
morphism of ind-groups and G an algebraic subgroup of Aut(X). Then ϕ(G) is an
algebraic subgroup of Aut(Y ).

Proof. We have to show that ϕ(G) is closed. The subgroup ϕ(G) ⊆ Aut(Y ) is the
preimage of G ⊆ Aut(X) under the isomorphism ϕ−1 : Aut(Y ) → Aut(X). Thus,
ϕ(G) ⊆ Aut(Y ) is the preimage of a closed subset of Aut(X) and in particular is
closed itself.

For an ind-group or algebraic group G we denote by G◦ the connected component
of the neutral element, i.e. the connected component of G that contains the neutral
element. Lemma 1.3 shows that G◦ is closed in G and thus is an ind-subgroup, or
algebraic subgroup respectively.

2.10 Lemma. Let ϕ : Aut(X) → Aut(Y ) an isomorphism of ind-groups, then ϕ
induces the isomporphism from Aut◦(X) to Aut◦(Y ).

Proof. First, an isomporphism sends the neutral element to the neutral element.
Lemma 1.4 further shows that the image of a connected subset is again connected
under the isomorphism ϕ, since morphisms are continuous maps. Analogously we
obtain that the preimage of a connected subset is connected under ϕ because the
inverse map of an isomorphism is still continuous. Thus, we have ϕ−1(Aut◦(Y )) ⊆
Aut◦(X) and similarly ϕ(Aut◦(X)) ⊆ Aut◦(Y ). Hence, ϕ restricted to Aut◦(X) is
an isomporphism between Aut◦(X) and Aut◦(Y ).

2.11 Lemma. Let G be an ind-group. Then G◦ ⊆ G is a normal subgroup of
countable index.

Proof. This proven in [4, Proposition 2.2.1].

If we replace Dp by An in the Main Theorem A, we obtain a stronger result.

2.12 Theorem. Let X be a connected a�ne variety. If Aut(X) ∼= Aut(An) as an
abstract group, then X ∼= An as a variety.

Proof. This theorem is proven in [17, Theorem A].

In the next chapter we cite properties that only have been proven for Danielewski
surfaces Dp where deg p ≥ 3. Therefore, it is necessary to consider the cases, where
deg p ≤ 2.
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2.13 Lemma. Let p be a polynomial with simple roots. We then have

Dp
∼=

{
A2, if deg p = 1,

SL2 /T, if deg p = 2,

where T denotes the torus

{(
t 0
0 t−1

)
| t ∈ C∗

}
.

Proof. First we consider the case deg p = 1. Choose a, b ∈ C such that p(z) = az+b.
Thus, we consider the map

A2 → Dp, (x, y) 7→
(
x, y,

xy − b
a

)
.

This map is well-de�ned because a is not 0 as deg p = 1. This map gives an
isomorphism with the following calculation

(x, y, z) ∈ Dp ⇔ xy = az + b⇔ xy − b = az ⇔ xy − b
a

= z.

Then we consider the case of deg p = 2. Our strategy is to show that Dp is
isomorphic to Dz2−1 and then apply Lemma 1.36. Choose a, b, c ∈ C such that
p (z) = a (z − b)2 − c. Note, that a and c cannot be 0, because p has simple roots
and is of degree 2. Consider the map

δ : Dp → Dz2−1, (x, y, z) 7→
(
cx, y, z ·

√
c

a
+ b

)
.

This map is an isomorphism, because we have

(x′, y′, z′) ∈ Dp ⇔ x′y′ = a (z′ − b)2 − c δ⇔ cxy = a

(
z ·
√
c

a
+ b− b

)2

− c

⇔ cxy = a

(
z ·
√
c

a

)2

− c⇔ cxy =
ac

a
(z)2 − c

⇔ cxy = cz2 − c⇔ xy = z2 − 1.

⇔ (x, y, z) ∈ Dz2−1

Thus, all Danielewski surfaces Dp with a polynomial p of degree 2 and simple roots
are isomorphic to each other. By Lemma 1.36 the proof follows.

Lemma 2.13 combined with Theorem 2.12 gives us the statement of the main
results in the case of Danielewski surfaces with polynomials of degree 1. To obtain
our claim for polynomials of degree 2, we need the following result.

2.14 Proposition. Let X be an irreducible variety and Aut(X) ∼= Aut(SL2 /T ) as
an ind-group. Then X ∼= SL2 /T as a variety.

Proof. This is proven in [16, Theorem 1.4].
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3 Root subgroups of Aut(Dp)

In this chapter we concentrate on the automorphism group of a Danielewski surface.
From now on we assume p to be a polynomial over C with degree at least 3 and with
only simple roots. This restriction of the degree is justi�ed by the results from the
previous chapter, where we already considered the cases deg p = 1, 2. To describe
the structure of Aut(Dp) we �rst need to de�ne the semidirect product and the free
product.

3.1 De�nition. Let N,H be groups and ψ : H → Aut(N), h 7→ ψh(n) = hnh−1 a
homomorphism. Then we de�ne the group G′ = (N,H) with the following group
operation for (n1, h1), (n2, h2) ∈ G′:

(n1, h1)(n2, h2) = (n1ψh1(n2), h1h2) = (n1h1n2h
−1
1 , h1h2).

This group G′ is called the semidirect product and we denote it with N oH.

3.2 De�nition. Let G and H be groups. A word is a string of elements from G
and H. Such a word can be reduced by

• removing an instance of the identity element,

• replacing a pair g1g2 by its product in G, or a pair h1h2 by its product in H.

If a word cannot be reduced anymore, it is in its reduced form and we call it
irreducible. The free group is the set of all irreducible �nite words where the group
operation is concatenation followed by maximal reduction. We denote the free group
with H ∗G.

3.3 Remark. The elements of G ∗ H are uniquely determent by the elements in
their reduced form. In other words two elements, of G∗H are di�erent, if they have
di�erent elements in their reduced form. We obtain this by

u1v1 . . . unvn = u′1v
′
1 . . . u

′
kv
′
k ⇔ u1v1 . . . unvnv

′−1
k u−1k . . . v′−11 u′−11 = id .

Note that the identity is only possible, if n = k, vi = v′i and ui = u′i.

The structure of the automorphism group of Dp is described in [12]. In this thesis
we follow the notations of [9, Section 5] to describe the structure of Aut(Dp) and
Aut(Dp)

◦.

T := {(x, y, z) 7→ (cx, c−1y, z) | c ∈ C∗} ∼= C∗,
Ux := {(x, y, z) 7→ (x, x−1p(z + g(x)), z + g(x)) | g ∈ xC[x]+},
Uy := {(x, y, z) 7→ (y−1p(z + h(y)), y, z + h(y)) | h ∈ yC[y]+}.

3.4 Remark. We note that the groups Ux and Uy do not commute. Indeed, let
u = (x, x−1p(z + g(x)), p(z + g(x)) ∈ Ux), v = (y−1p(z + h(y)), y, z + h(y)) ∈ Uy be
two elements. Then u ◦ v and v ◦ u are given by

u ◦ v : (x, y, z) 7→(
y−1p(z + h(y)),

p(z + h(y) + g(y−1p(z + h(y))))

y−1p(z + h(y))
, z + h(y) + g(y−1p(z + h(y)))

)
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and

v ◦ u : (x, y, z) 7→(
p(z + g(x) + h(x−1p(z + g(x))))

x−1p(z + g(x))
, x−1p(z + g(x)), z + g(x) + h(x−1p(z + g(x)))

)
.

This shows that v ∈ Uy and u ∈ Ux do not commute.

De�ne I as the subgroup of Aut(Dp) generated by the involution τ : (x, y, z) 7→
(y, x, z).
Let Γ be the subgroup generated by γ : (x, y, z) 7→ (x, µy, az + b), where µ, a, b ∈ C
such that µp(z) = p(az + b). If p has simple roots, Γ is �nite. The set Γ can be
trivial which is the case if there does not exist an automorphism of C permuting the
roots of p. By [9, Proposition 5] we obtain

Aut(Dp) = (Ux ∗ Uy) o ((T × Γ) o I), (2)

Aut◦(Dp) = (Ux ∗ Uy) o T. (3)

As we know from the preliminaries, O(Dp) can be written as C[x, y, z]/(xy − p(z)).
We observe that multiples of xy can be written as multiples of p(z). Thus, O(Dp)
cannot contain multiples of xy, if we use C[z]. This illustrates the description

O(Dp) = xC[x, z]⊕ yC[y, z]⊕ C[z].

3.5 Remark. It is important to note that Ux and Uy are normalized by T .
Let u = (x, x−1p(z + g(x)), z + g(x)) ∈ Ux and t = (cx, c−1y, z). Thus, we derive

t ◦ u ◦ t−1 :

(x, y, z) 7→(cx, c−1y, z) ◦ (x, x−1p(z + g(x)), z + g(x)) ◦ (c−1x, cy, z)

= (cx, c−1y, z) ◦ (c−1x, (c−1x)−1p(z + g(c−1x)), z + g(c−1x))

= (cc−1x, c−1(c−1x)−1p(z + g(c−1x)), z + g(c−1x))

= (x, x−1p(z + g(c−1x)), z + g(c−1x))

and analogously we get

t ◦ v ◦ t−1 : (x, y, z) 7→ (y−1p(z + h(cy)), y, z + h(cy))

for v = (y−1p(z + h(y)), y, z + h(y)) ∈ Uy.

This calculation also shows that no non-trivial element from T commutes with a
non-trivial element from Ux nor Uy.

3.6 Lemma. The centralizer of T ⊆ Aut(Dp) is T × Γ.

Proof. First, we consider the composition of I and T . Let t = (cx, c−1y, z) ∈ T and
τ = (y, x, z) ∈ I. Then

τ ◦ t ◦ τ−1 :

(x, y, z) 7→(y, x, z) ◦ (cx, c−1y, z) ◦ (y, x, z)

= (y, x, z) ◦ (cy, c−1x, z)

= (c−1x, cy, z).
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Thus, I normalizes T , but does not commute with it.

The next step is to consider the composition of T with Ux ∗ Uy. From Remark
3.5 we already know that the centralizer of T in Aut(Dp) does not contain any non-
trivial elements from both Ux or Uy. We check now that a non-trivial element from
T does not commute with a non-trivial element from Ux ∗ Uy.

Let t ∈ T and u1v1 . . . unvn ∈ Ux ∗ Uy. We consider

tu1v1 . . . unvnt
−1 = tu1t

−1tv1t
−1t . . . t−1tunt

−1tvnt
−1 = u′1v

′
1 . . . u

′
nv
′
n

with u′i := tuit
−1 and v′i := tvit

−1 respectively. From Remark 3.5 we know that ui
and u′i are di�erent. By Remark 3.3 we have u1v1 . . . unvn 6= u′1v

′
1 . . . u

′
nv
′
n. This

shows that u1v1 . . . unvn is not an element of the centralizer of T .

Analogously, we obtain that T does not commute with any element that is the
product of x ∈ Ux∗Uy and τ ∈ I\{id} = {τ}. This follows because xτ ∈ (Ux∗Uy)oI,

txτt−1 = txt−1tτ t−1 = (txt−1)(τt−2)

where txt−1 ∈ Ux ∗ Uy and txt−1τt−2 /∈ (Ux ∗ Uy) o I.

Finally we show that t = (cx, c−1y, z) ∈ T commutes with γ = (x, µy, az+ b) ∈ Γ,
where µp(z) = p(az + b). Indeed,

γ ◦ t ◦ γ−1 :

(x, y, z) 7→(x, µy, az + b) ◦ (cx, c−1y, z) ◦ (x, µ−1y,
z − b
a

)

= (x, µy, az + b) ◦ (cx, c−1µ−1y,
z − b
a

)

= (cx, c−1y, z)

and in particular γ ◦ t = t ◦ γ.

3.7 Remark. Now we consider the structure of Ux and Uy. Let

ϕ : xC[X]+ → Ux, g(x) 7→ (x, x−1p(z + g(x)), z + g(x)).

We claim that ϕ is the isomorphism. Let u1 = ϕ(g1) = (x, x−1p(z + g1(x)), z +
g1(x)) ∈ Ux, u2 = ϕ(g2) = (x, x−1p(z + g2(x)), z + g2(x)) ∈ Ux be two elements.
Then we consider the composition

u1 ◦ u2 = ϕ(g2) ◦ ϕ(g2) :

(x, y, z) 7→(x, x−1p(z + g1(x)), z + g1(x)) ◦ (x, x−1p(z + g2(x)), z + g2(x))

= (x, x−1p(z + g1 + g2(x)), z + g1 + g2(x))

= (x, x−1p(z + (g1 + g2)(x)), z + (g1 + g2)(x)).

This shows that ϕ(g1 + g2) = ϕ(g1) + ϕ(g2). Thus, Ux is isomorphic to xC[x]+ as a
group. Furthermore, Ux is an ind-group. A �ltration is given by

(Ux)d := {(x, y, z) 7→ (x, x−1p(z + g(x)), z + g(x) | g ∈ xC[x]+, deg g ≤ d}.
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and by Example 2.3 ϕ is the isomorphism of ind-groups. Analogously we obtain
that the map

yC[y]+ → Uy, h 7→ (y−1p(z + h(y)), y, z + h(y))

is the isomorphism of ind-groups.

3.8 Lemma. The centralizer of Ux ⊆ Aut(Dp) and of Uy ⊆ Aut(Dp) coincides with
Ux and Uy respectively.

Proof. The cases of Ux and Uy are analogous to each other. Therefore, we only have
to consider Ux.

Now we check if Ux commutes with any of the other subgroups T, I,Γ, Ux ∗ Uy.
In Lemma 3.6 it is proved that groups T and Ux do not commute. Now, let u =
(x, x−1p(z + g(x)), z + g(x)) ∈ Ux and τ = (y, x, z) ∈ I. Then

τ ◦ u ◦ τ−1 :

(x, y, z) 7→(y, x, z) ◦ (x, x−1p(z + g(x)), z + g(x)) ◦ (y, x, z)

= (y, x, z) ◦ (y, y−1p(z + g(y)), z + g(y)))

= (y−1p(z + g(y)), y, z + g(y))

and thus τ is not an element of the centralizer of Ux.

Next we take γ = (x, µy, az + b) ∈ Γ with µp(z) = p(az + b). Then

γ ◦ u ◦ γ−1 :

(x, y, z) 7→ (x, µy, az + b) ◦
(
x, x−1p (z + g (x)) , z + g (x)

)
◦
(
x, µ−1y,

z − b
a

)
= (x, µy, az + b) ◦

(
x, x−1p

(
z − b
a

+ g (x)

)
,
z − b
a

+ g (x)

)
=

(
x, µx−1p

(
z − b
a

+ g (x)

)
, z − b+ ag (x) + b

)
=
(
x, x−1p (z + ag (x)) , z + ag (x)

)
.

The last equality follows because

µp

(
z − b
a

+ g (x)

)
= p

(
a

(
z − b
a

+ g (x)

)
+ b

)
= p (z + ag (x)) .

Thus, non-trivial elements from Ux and γ do not commute.

Finally, Remark 3.4 and Remark 3.7 show that the only elements from Ux ∗ Uy
that commute with each element of Ux are the elements from Ux itself. Let u ∈
Ux, t ∈ T, ν ∈ I, γ ∈ Γ and z ∈ Ux ∗ Uy. Assume that ztγν commutes with each
element u ∈ Ux. If z /∈ Ux then we claim that

u = (ztγν)−1u(ztγν) = (ν−1γ−1t−1z−1)u(ztγν) ∈ Ux ∗ Uy \ Ux (4)

which contradicts the assumption that u ∈ Ux. (4) follows because I, T,Γ nor-
malise Ux ∪ Uy and hence they do not change the number of elements in the word
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z−1uz ∈ Ux ∗ Uy \ Ux. Thus, z ∈ Ux and ztγν commutes with Ux if and only if tγν
commutes with Ux. Assume next that ν 6= id. Then νuν−1 ∈ Uy and in particular
tγνuν−1γ−1t−1 ∈ Uy because T and Γ normalise Uy. Thus, ν = id. Suppose γ =
(x, µy, az + b) ∈ Γ, t = (cx, c−1y, z) ∈ T and u = (x, x−1p(z + g(x)), z + g(x)) ∈ Ux
then we obtain the following:

tγuγ−1t−1 = (x, x−1p(z + ag(c−1x)), z + ag(c−1x))

Thus, the product tγ does not lie in the centralizer of Ux and the proof follows.

3.9 Remark. We already saw that T normalizes Ux and Uy. The proofs of Lemma
3.6 and 3.4 show further interactions between the subgroups. The involution τ =
(y, x, z) ∈ I normalizes t ∈ T with τ ◦ t ◦ τ = t−1 and ful�lls Ux = τUyτ

−1.
Furthermore, Γ normalizes Ux, Uy and commutes with T . Since Ux ∗ Uy is a string
of elements of Ux and Uy, it is normalized by T , I and Γ as well.

In the following we focus on special subgroups because they are important for the
proof of the main results.

3.10 De�nition. Let X be an a�ne variety. A subgroup U ⊆ Aut(X) is called a
root subgroup with respect to T ′ ∼= (C∗)k ⊆ Aut(X) if U is an algebraic subgroup
isomorphic to C+ and normalized by T ′.

To each root subgroup we attach a so-called weight. To de�ne the weight, we must
consider other lemmas.

3.11 Lemma. Let ϕ be a homomorphism of algebraic groups from C∗ to C∗. Then
there exists r ∈ Z such that for all x ∈ C \ {0} we have ϕ(x) = xr.

Proof. The described maps are obviously all endomorphisms of C∗. Therefore, the
task is to show that there is no other endomorphism.

Let ϕ be an endomorphism of C∗. Consider the pull back ϕ∗ : O(C∗) → O(C∗)
which we de�ned in Remark 1.15. By Lemma 1.17 we know that O(C∗) and C[t, t−1]
are isomorphic. With that we have

ϕ∗ : C[t, t−1]→ C[t, t−1], f(t) 7→ f(ϕ(t)).

Computing ϕ∗(t) with t ∈ C[t, t−1] gives us the original ϕ as the image. In particular,
we know that ϕ is an element of C[t, t−1]. Thus, there exist g, h ∈ C[t] with no
common root, such that ϕ = g/h. Next, we consider the properties of ϕ. We note
that ϕ is an endomorphism of C∗. We see that h has no roots other than 0, since
ϕ would not be well-de�ned at those roots. This argument also holds for roots of
g because g(x) belongs to C∗ for any x ∈ C∗. With those two arguments ϕ has to
have the form ctk for c ∈ C∗ and k ∈ Z.

If we assume that c is not equal to 1, then we get

ϕ(1) · ϕ(1) = c2 6= c = ϕ(1 · 1).

This contradicts the fact that ϕ is a homomorphism. Therefore, c must be equal to
1 which concludes the proof.
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From Lemma 3.11 we further obtain a classi�cation of all automorphisms of C∗.
3.12 Corollary. Let ϕ be an automorphism of algebraic groups from C∗ to C∗.
Then there exists r ∈ {−1, 1}, such that for all x ∈ C \ {0} we have ϕ(x) = xr.

Proof. By Lemma 3.11 we already have that ϕ(x) = xr for some r ∈ Z. Thus, we
only need to prove that r ∈ Z \ {−1, 1} is not possible. The kernel of ϕ is trivial.
If r ∈ Z \ {−1, 1}, we always have the roots of unity as non-trivial kernel. Thus,
ϕ(x) = xr is an automorphism if and only if r ∈ {−1, 1}.

3.13 Lemma. Let A be the set of C∗-actions on C+. Then there exists a bijection
w : A→ Z such that ρ(g, x) = gw(ρ)x for all ρ ∈ A, g ∈ C∗ and x ∈ C+.

Proof. Let ρ : C∗ × C+ → C+ be a C∗-action on C+. We de�ne

ρg : C+ → C+, x 7→ ρ(g, x),

for g ∈ C∗. Since ρg has the inverse map ρg−1 , it is from Aut(C+). By Lemma 1.31
we have Aut(C+) ∼= C∗ and that there exists cg ∈ C∗, such that ρg(x) = cgx.

As the next step, we consider the map

ρ′ : C∗ → C∗, h 7→ ch.

Since ρg ◦ρh = ρgh for all g, h ∈ C∗, ρ′ has to be an homomorphism. By Lemma 3.11
there exists r ∈ Z such that ρ′(h) = hr. Thus ρ(g, x) = ρg(x) = cgx = grx which
gives us the map w : A → Z, ρ 7→ r. This map is obviously injective. Moreover, w
is surjective since for any r ∈ Z ρ(g, x) = grx is a C∗-action of C+.

3.14 Remark. (1) We call r = w(ρ) ∈ Z from Lemma 3.13 the weight of a C∗-
action ρ.
(2) Note that we can apply an automorphism of C∗, to the C∗-action. By Corollary
3.12 the only non-trivial automorphism of C∗ is given by the map g 7→ g−1. This
implies that it is possible to change the sign of r ∈ Z. Hence, depending on the
action of a torus, the weight of C∗-action on C+ is −n or n with n ∈ N. But the
absolute value cannot change.
(3) It is important to see that this change of the sign can only e�ect all weights
together. Thus, if two root subgroups have di�erent weights with respect to one
action of the torus, they have di�erent weights with respect to another torus.
(4) From now on we consider the weight up to torus automorphisms which means
that the sign can change. But this is not a problem, since we concentrate on cases,
where the signs are di�erent.

3.15 Corollary. Let ρ be a non-trivial C∗-action on C+. Then ρ acts transitively
on C \ {id}.

Proof. By Lemma 3.13 there exists r ∈ Z, with ρ : C∗ × C+ → C+, (g, x) 7→ grx.
Since ρ is non-trivial, r cannot be 0.
Thus, the action has to obviously be transitive on C+{0}.
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The next goal is to de�ne root subgroups of Aut(Dp) with respect to T , and
consider their weights. Let n be an element from N1. We then de�ne

Ux,n := {(x, y, z) 7→ (x, x−1p(z + sxn), z + sxn) | s ∈ C},

Uy,n := {(x, y, z) 7→ (y−1p(z + ryn), y, z + ryn) | r ∈ C}.

3.16 Lemma. Let n ∈ N1, then Ux,n and Uy,n are root subgroups with respect to
T . Moreover, Ux,n has the weight −n, and Uy,n has the weight n up to a torus
automorphism.

Proof. First we have to verify that both Ux,n and Uy,n are isomorphic to C+. Let
u = (x, x−1p(z+ sxn), z+ sxn) and v = (x, x−1p(z+ rxn), z+ rxn) be elements from
Ux,n, with s, r ∈ C. Then Remark 3.7 shows that

u ◦ v = (x, x−1p(z + (r + s)xn), z + (r + s)xn).

Thus, the composition in Ux,n is well-de�ned and the isomorphism ϕ : C → Ux,n is
given by

g 7→ (x, x−1p(z + gxn), z + gxn).

The same claim follows analogously for Uy,n.

Now we need to check whether T normalizes Ux,n. Let u = (x, x−1p(z + sxn), z +
sxn) ∈ Ux,n and t = (cx, c−1y, z) ∈ T , where s ∈ C and c ∈ C∗. With the calculation
from Remark 3.5 we derive

t ◦ u ◦ t−1 : (x, y, z) 7→ (x, x−1p(z + sc−nxn), z + sc−nxn).

It follows, that T normalizes Ux,n. Since ϕ
−1(u) = s and ϕ−1(t ◦u ◦ t−1) = c−ns, the

weight has to be −n by the de�nition and Lemma 3.13. Analogously we get

t ◦ v ◦ t−1 : (x, y, z) 7→ (y−1p(z + scnyn), y, z + scnyn)

for v = (y−1p(z + syn), y, z + syn) ∈ Uy,n. This shows that Uy,n has the weight n.
This concludes the proof.

Additionally, we consider another characterization for Ux,n.

3.17 Lemma. Let n ∈ N be and t = ( n
√

2x, ( n
√

2)−1y, z) ∈ T . Then

Ux,n =
{
u ∈ Ux | t−1 ◦ u ◦ t = u2

}
.

Proof. We use the same notations as in Remark 3.5. Thus, we have

t−1 ◦ u ◦ t : (x, y, z) 7→ (x, x−1p(z + g(cx)), z + g(cx)),

where t ∈ T and u ∈ Ux with c = n
√

2 ∈ C∗ and g(x) ∈ xC[x]+ respectively. To
satisfy

t−1 ◦ u ◦ t = u2 = (x, x−1p(z + 2g(x)), z + 2g(x)),

g(x) must be a monomial of degree n. The proof follows.
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In the following, we consider the relationship between the weights and the root
subgroups in Aut(Dp). This is necessary for the proofs of the main results. We
show that Ux,n and Uy,n are all root subgroups in Aut(Dp). Moreover, it is possible
to determine root subgroups uniquely by their weights. Before we do that, we �rst
introduce some notions.

If there exists a faithful regular C∗-action on X, we consider the �xed points
associated with this action. It is proven that there are only three types of those
actions. There is elliptic C∗-action, where there is only one attractive �xed point.
A C∗-action on X with an in�nite number of �xed points is parabolic C∗-action. If
there are �nitely many non-attractive C∗-�xed points in X, a C∗-action is called
hyperbolic.

3.18 Lemma. Let S be a non-toric C∗-surface. Then

(1) The surface S admits root subgroups of di�erent weights, if and only if S is
hyperbolic.

(2) If S is hyperbolic, then all root subgroups have di�erent weights.

Proof. This lemma is proven in [10, Lemma 4.16].

3.19 Theorem. The root subgroups Ux,n, Uy,n are all root subgroups in Aut(Dp)
with respect to T .

Proof. By Lemma 3.16 we know that Ux,n and Uy,n are root subgroups of Aut(Dp)
with respect to T of all possible weights except 0. Remark 3.6 also shows that we
cannot have a root subgroup with the weight 0, since all of its elements have to
commute with T . Thus, we have to show that all root subgroups of Aut(Dp) with
respect to T have di�erent weights.

To prove that all root subgroups have di�erent weights we use Lemma 3.18. Thus,
we �rst check whether Dp is non-toric. From the description of Aut(Dp) (see (2))
we know that there is no copy of (C∗)2 in Aut(Dp). Hence, Dp is non-toric.

Since Dp admits root subgroups Ux,1, Ux,2 ⊆ Aut(Dp) with respect to T of di�erent
weights, Dp is hyperbolic C∗-surface (Lemma 3.18 (1)). Hence, Lemma 3.18 (2)
implies that all root subgroups of Aut(Dp) with respect to T have di�erent weights.

3.20 Remark. The most important implication of Theorem 3.19 is the fact that
every root subgroups in Aut(Dp) is uniquely determined by its weight. We resume
this in the next chapter.
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4 Proof of main results

From now on we assume X to be an a�ne variety which is also normal and irre-
ducible. Moreover, we assume that ϕ : Aut(Dp) → Aut(X) is an isomorphism of
abstract groups.

The following proposition is used in the prove of Lemma 4.2 where we show that
ϕ(T ) and ϕ(Ux,1) are one-dimensional subgroups of Aut(X).

4.1 Proposition. Let X be an a�ne variety and let G,H ⊆ Aut(X) be non-trivial
commutative connected closed subgroups such that

(1) all non-trivial elementsan in H are of in�nite order,

(2) G normalizes H,

(3) for all h ∈ H \ {idX}, the group {g ∈ G | g ◦ h ◦ g−1 = h} is �nite.

Then there exist increasing �ltration by closed commutative algebraic subgroups
G1 ⊆ G2 ⊆ . . . ⊆ G and H1 ⊆ H2 ⊆ . . . ⊆ H, such that Gk normalizes Hk for all
k ≥ 1,

G =
∞⋃
k=1

Gk and H =
∞⋃
k=1

Hk.

Moreover, for all k ≥ 1 there exist sk ≥ 0, rk ≥ 0, such that

Gk
∼= (C∗)sk and Hk

∼= (C+)rk ,

and sk, rk ≥ 1 for k big enough.

Proof. This is proven in [18, Corollary 3.3].

4.2 Lemma. The subgroup ϕ(T ) ⊆ Aut(X) is a one-dimensional torus and the
subgroup ϕ(Ux,1) ⊆ Aut(X) is a root subgroup with respect to ϕ(T ).

Proof. We apply Proposition 4.1 to the subgroups ϕ(T )
◦
and ϕ(Ux,1)

◦
. Thus, we

check, if ϕ(T )
◦
and ϕ(Ux,1)

◦
ful�ll the requirements of Proposition 4.1. Both sub-

groups are by de�nition closed and connected. By Lemma 3.8 and Lemma 3.6 both
Ux and T ×Γ coincide with their centralizers. Thus, ϕ(Ux) and ϕ(T ×Γ) are closed
in Aut(X) by Corollary 2.8. This implies that

ϕ(Ux,1)
◦
⊆ ϕ(Ux) and ϕ(T )

◦
⊆ ϕ(T × Γ).

Moreover, ϕ(Ux,1)
◦
and ϕ(T )

◦
are commutative as ϕ(Ux) and ϕ(T × Γ) are commu-

tative. Set t = (
√

2x, (
√

2)−1y, z) ∈ T and by Lemma 3.17 and we obtain

ϕ(Ux,1) = {u ∈ ϕ(Ux) | ϕ(t−1) ◦ u ◦ ϕ(t) = u2}

which shows that ϕ(Ux,1) is closed in ϕ(Ux). Since ϕ(Ux) is closed in Aut(X), the
set ϕ(Ux,1) is closed in Aut(X) as well. By Lemma 1.3 ϕ(Ux,1)

◦ is closed in Aut(X).
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Next, we check the properties (1) to (3) of Proposition 4.1. All non-trivial elements
in ϕ(Ux,1) have an in�nite order, because Ux,1 is isomorphic to C+ which has this
property. Let u = (x, x−1p(z + gx)), z + gx) ∈ Ux,1, t = (cx, c−1y, z) ∈ T and
γ = (x, µy, az + b) ∈ Γ. By the proof of Lemma 3.8 and by Remark 3.5 it follows

γuγ−1 = (x, x−1p(z + agx), z + agx) and tut−1 = (x, x−1p(z + c−1gx)), z + c−1gx).

Thus, T and Γ normalize Ux,1. Furthermore, {g ∈ ϕ(T )
◦
| g ◦ h ◦ g−1 = h} is trivial

for all h ∈ ϕ(Ux,1) \ {id}. Hence, the third property of Proposition 4.1 is ful�lled.
Recall that Γ and T act on Ux,1 by conjugation. Thus, ϕ(T ×Γ) acts on ϕ(Ux,1) and

in particular ϕ(T )
◦
⊆ ϕ(T × Γ) acts on ϕ(Ux,1). For t ∈ ϕ(T × Γ) we consider the

morphism
ρt : Aut(X)→ Aut(X), x 7→ txt−1

which sends the identity to the identity. By Lemma 1.4

tϕ(Ux,1)
◦t−1 ⊆ ϕ(Ux,1)

◦. (5)

Moreover, ϕ(T )
◦
acts on ϕ(Ux,1)

◦ and we have the second property. Thus, we apply
Proposition 4.1 and obtain

ϕ(T )
◦ ∼=

∞⋃
k=1

(C∗)sk and ϕ(Ux,1)
◦ ∼=

∞⋃
k=1

(C+)rk . (6)

There exists p ∈ N, such that there is no subgroup of T × Γ isomorphic to (Z/pZ)2.

Thus, ϕ(T )
◦
cannot contain a subgroup isomorphic to (Z/pZ)2 either. This means

that sk cannot be bigger than 1, because (C∗)2 contains a copy of (Z/nZ)2 for each

natural n. Therefore, ϕ(T )
◦
is isomorphic to C∗.

Now we claim that ϕ(Ux,1) ⊆ Aut(X) is isomorphic to C+. Indeed, by Example
1.36 all elements of T are divisible. Further, since Γ is a �nite group, it does not
contain any non-trivial divisible element. Since ϕ(T )

◦
⊆ ϕ(T )× ϕ(Γ) and since all

elements of ϕ(T )
◦ ∼= C∗ are divisible,

ϕ(T )
◦
⊆ ϕ(T ). (7)

Furthermore, ϕ(T ) acts transitively on ϕ(Ux,1)\{id} because Ux,1 is a root subgroup
with respect to T of weight one. Hence, ϕ(T ) ⊆ ϕ(T )× ϕ(Γ) also acts transitively
on ϕ(Ux,1) \ {id}. By Lemma 2.11 there exists a countable set C ⊆ ϕ(T ) such that⋃
g∈C ϕ(T )

◦
g = ϕ(T ). Hence, ϕ(T )

◦
acts with a dense orbit on ϕ(Ux,1)

◦. As ϕ(T )
◦ ∼=

C∗ is one-dimensional, ϕ(Ux,1) is one-dimensional too and by (6) ϕ(Ux,1)
◦ ∼= C+.

By (5) ϕ(t)ϕ(Ux,1)
◦ϕ(t)−1 ⊆ ϕ(Ux,1)

◦ for any ϕ(t) ∈ ϕ(T ). Since ϕ(T ) acts
transitively on ϕ(Ux,1) \ {id}, we have

ϕ(Ux,1) \ {id} = {ϕ(t) · x · ϕ(t)−1 | t ∈ T} ⊆ ϕ(Ux,1)
◦ \ {id},

where x ∈ ϕ(Ux,1)
◦ \ {id}. We conclude ϕ(Ux,1)

◦ \ {id} = ϕ(Ux,1) \ {id}. This in
particular means that C+ ∼= ϕ(Ux,1)

◦ = ϕ(Ux,1). Hence, ϕ(Ux,1) is a root subgroup of
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Aut(X) with respect to ϕ(T )
◦
⊆ Aut(X). To �nish the proof we need to show that

ϕ(T )
◦

= ϕ(T ). Indeed, by Corollary 3.15 ϕ(T )
◦
acts transitively on ϕ(Ux,1) \ {id}

and since by (7) we have the inclusion ϕ(T )
◦
⊆ ϕ(T ), ϕ(T )

◦
acts on ϕ(Ux,1) with

the trivial kernel. This �nally implies ϕ(T )
◦

= ϕ(T ) by Lemma 1.40.

Using Lemma 4.2 we prove that the dimension of X cannot be smaller than 2.

4.3 Lemma. The dimension of X is at least 2.

Proof. Assume towards a contradiction that X is of dimension one. Note that by
Lemma 4.2 ϕ(Ux,1) ⊆ Aut(X) is an algebraic subgroup isomorphic to C+. Let
x ∈ X be a point that is not a �xed ϕ(Ux,1)-point. The stabilizer Stabϕ(Ux,1)(x) is
a closed non-trivial subgroup of ϕ(Ux,1). Moreover, Theorem 1.44 states that the
orbit ϕ(Ux,1) ·x of x is a closed subset of X. Lemma 1.25 shows that a closed subset
of a one-dimensional X is �nite or X.

By Lemma 1.39 ϕ(Ux,1) · x and ϕ(Ux,1)/ Stabϕ(Ux,1)(x) are isomorphic as varieties.
Since the stabilizer Stabϕ(Ux,1(x) ⊆ ϕ(Ux,1) is a closed subgroups by Lemma 2.7,
it is either �nite or the whole group by Lemma 1.25. Thus, the stabilizer is �nite,
because the stabilizer is not the whole group ϕ(Ux,1). This implies that the stabilizer
is trivial, since ϕ(Ux,1) does not contain �nite subgroups. In particular, this means
that ϕ(Ux,1) · x = X. Thus, X has to be isomorphic to ϕ(Ux,1) ∼= C+ as a variety.
By Theorem 2.12 Dp

∼= A1 which is a contradiction since Dp is a surface. Thus, the
dimension of X cannot be 1.

Now we must show that the dimension of X cannot be greater than 2. Before
proving that, further notions are necessary.

4.4 De�nition. Let f be an element from O(X) and G a subgroup of Aut(X).
The function f is called G-invariant, if f(gx) = f(x) for all g ∈ G and x ∈ X. The
set of all G-invariants is denoted by O(X)G and called the invariant ring.

A similar concept to invariants are the so-called semi-invariants. The function
f is called semi-invariant, if for all g ∈ G and x ∈ X, there exists a character
χ : G→ C∗, such that f(gx) = χ(g)f(x).

A vector subspace V ⊆ O(X) that is stable under G-action is called multiplicity-
free with respect toG if allG-semi-invariants from V of the same weight are multiples
of each other.

4.5 Remark. Let f and f ′ be two elements of O(X)G. Then f + f ′ is again an
invariant, since

(f + f ′)(gx) = f(gx) + f ′(gx) = gf(x) + gf ′(x) = g(f(x) + f ′(x)) = g(f + f ′)(x)

for all g ∈ G and x ∈ X. Analogously, we have

(f · f ′)(gx) = f(gx) · f ′(gx) = gf(x) · gf ′(x) = g(f(x) · f ′(x)) = g(f · f ′)(x)

for all g ∈ G and x ∈ X. Thus, it is justi�ed to call O(X)G a ring.
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4.6 Lemma. Let X be an irreducible a�ne variety and let T ⊆ Aut(X) be a torus.
Assume that there exists a root subgroup U ⊆ Aut(X) with respect to T , such that
O(X)U is multiplicity-free. Then dimT ≤ dimX ≤ dimT + 1.

Proof. This lemma is proven in [7, Lemma 5.2].

We use Lemma 4.6 to prove Theorem 4.10.

4.7 De�nition. Let λ : C+ → Aut(X) be a non-trivial action. For an invariant
f ∈ O(X) we de�ne the modi�cation f · λ as

(f · λ)(s)x := λ(f(x)s)x for s ∈ C and x ∈ X.

Note that f · λ again de�nes a C+-action on X.

If U ⊆ Aut(X) is a subgroup isomorphic to C+ and if f ∈ O(X)U is an U -
invariant, then we de�ne the modi�cation f · U of U in a similar way. Choose an
isomorphism λ : C+ → U and set f · U := (f · λ)(C+), the image of the modi�ed
action.

4.8 Remark. Let f ∈ O(X) be a semi-invariant of weight k with respect to a torus
T ⊆ Aut(X) isomorphic to C∗ and U ⊆ Aut(X) be a root subgroup with respect to
T of weight l. Then, the weight of f · U is the sum of the weight k + l.

4.9 Lemma. Let f, g ∈ O(X) be two semi-invariants with respect to a torus T ⊆
Aut(X) and U ⊆ Aut(X) be a root subgroups with respect to T . If the intersection
f · U ∩ g · U is non-trivial, f and g are multiples of each other.

Proof. By Theorem 1.44 U -orbits are closed subvarieties of X. Since U ∼= C+ is
irreducible, U -orbits are also irreducible. Hence, a U -orbit is either a point or a one-
dimensional closed subvariety of X. Thus, U acts without �xed points on X \XU

and since U is a one-dimensional algebraic group, i.e. U does not contain a proper
closed non-trivial subgroup, U acts onX\XU freely. Denote the set of �xed U -points
in X by XU .

Assume that f · U ∩ g · U is not trivial, then there is c ∈ C that satis�es

λ(f(x)s)x = λ(g(x)cs)x for s ∈ C, x ∈ X.

Since we have a free action f(x)s = g(x)cs for all x ∈ X \XU . Moreover, X \XU ⊆
X is dense because X \ XU is an open subset in the irreducible set X. Thus,
f(x) = cg(x) for any x ∈ X. The proof follows.

4.10 Theorem. The dimension of X is at most 2.

Proof. By Lemma 4.2 ϕ(Ux,1) is a root subgroup with respect to ϕ(T ). To prove the
theorem we need to show that O(X)ϕ(Ux,1) is multiplicity-free with respect to ϕ(T ).

Assume towards a contradiction that there are g, f ∈ O(X)ϕ(Ux,1) with the same
weight that are not multiples of each other. We now consider subgroups f · ϕ(Ux,1)
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and g · ϕ(Ux,1) of Aut(X). Remark 4.8 shows that both have the same weight and
by Lemma 4.9 they have a trivial intersection.

The next step is to consider the preimages ϕ−1(f · ϕ(Ux,1)), ϕ
−1(g · ϕ(Ux,1)) ⊆

Aut(Dp) and ϕ
−1(ϕ(T )) = T . Since ϕ(T ) acts transitively on ϕ(Ux,1) \ {id} and f

is an ϕ(T )-semi-invariant, ϕ(T ) acts transitively on (f ·ϕ(Ux,1))\{id}. This implies
that T acts transitively on ϕ−1(f · ϕ(Ux,1)) \ {id}. By Lemma 1.42 we obtain that
ϕ−1(f · ϕ(Ux,1)) is a quasi-a�ne curve. Thus, ϕ−1(f · ϕ(Ux,1)) is a constructible set

which is a group. By Lemma 1.41 (1) ϕ−1(f · ϕ(Ux,1)) = ϕ−1(f · ϕ(Ux,1)). Hence,
ϕ−1(f · ϕ(Ux,1)) ⊆ Aut(Dp) is an algebraic subgroup of dimension 1. To conclude
that ϕ−1(f ·ϕ(Ux,1)) is connected, we note that ϕ

−1(f ·ϕ(Ux,1)) \ {id} is irreducible
and (

(ϕ−1(f · ϕ(Ux,1)) \ {id}
)
·
(
ϕ−1(f · ϕ(Ux,1)) \ {id}

)
= ϕ−1(f · ϕ(Ux,1)).

Thus, ϕ−1(f · ϕ(Ux,1)) can be written as the product of two irreducible quasi-a�ne
subsets of Aut(Dp) and is in particular irreducible. By Lemma 1.32 ϕ−1(f ·ϕ(Ux,1))
is either isomorphic to C+ or C∗. Since ϕ−1(f · ϕ(Ux,1)) has no elements of �nite
order, it is isomorphic to C+. Therefore, ϕ−1(f · ϕ(Ux,1)) is a root subgroup of
Aut(Dp) with respect to T . Analogously we obtain that ϕ−1(g · ϕ(Ux,1)) is a root
subgroup of Aut(Dp) with respect to T .

By construction ϕ−1(f · ϕ(Ux,1)) and ϕ
−1(g · ϕ(Ux,1)) are di�erent root subgroups

in Aut(Dp). Moreover, T acts on ϕ−1(f ·ϕ(Ux,1)) and ϕ
−1(g ·ϕ(Ux,1)) non-trivially.

This implies that the kernels of such T -actions are �nite as follows from Lemma 3.13.
Since ϕ : Aut(Dp) → Aut(X) is the isomorphism, the cardinalities of the kernels
of T -actions on ϕ−1(f · ϕ(Ux,1)) and ϕ−1(g · ϕ(Ux,1)) are the same as cardinalities
of the kernels of ϕ(T )-actions on f · ϕ(Ux,1) and g · ϕ(Ux,1). Thus, ϕ

−1(f · ϕ(Ux,1))
and ϕ−1(g ·ϕ(Ux,1)) have the same weights up to a sign, because the kernel uniquely
determines the weight up to a sign. Furthermore, f ·ϕ(Ux,1) and g ·ϕ(Ux,1) commute
and thus ϕ−1(f ·ϕ(Ux,1)) and ϕ

−1(g ·ϕ(Ux,1)) commute as well. Non-trivial elements
from Ux and Uy do not commute by Lemma 3.8 which means that ϕ−1(f ·ϕ(Ux,1)) and
ϕ−1(g·ϕ(Ux,1)) are either both subgroups of Ux or both subgroups of Uy. Hence, both
weights have the same sign by Lemma 3.16 and ϕ−1(f ·ϕ(Ux,1)) and ϕ

−1(g ·ϕ(Ux,1))
have the same weight.

This is a contradiction to Lemma 3.19, because root subgroups are uniquely de-
termined by their weights in Aut(Dp). Hence, f and g are multiples of each other
and O(X)ϕ(Ux,1) is multiplicity-free. Thus, the proof follows by Lemma 4.6 and the
fact that the dimension of ϕ(T ) ∼= C∗ is one.

The next result is going to be used in the proof of Main Theorem A.

4.11 Theorem. Let S be a normal a�ne surface and Dp be a Danielewski surface
for some p ∈ C[z]. If Aut(S) and Aut(Dp) are isomorphic as groups, then S is
isomorphic to Dq for some polynomial q ∈ C[z].

Proof. This theorem is proved in [11, Theorem 1].
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Proof of Main Theorem A. Let deg p = 1. Then, Lemma 2.13 states Dp
∼= A2 and

Theorem 2.12 proves our claim.

Hence, we assume deg p ≥ 3. We apply Lemma 4.3 and Theorem 4.10 to conclude
dimX = 2. Thus, X is a surface. By Theorem 4.11, the proof follows.

Let p, q ∈ C[z] be polynomials with only simple roots and degree at least 3.
Formula (2) in Chapter 3 showed,

Aut◦(Dp) = (Ux ∗ Uy) o T.

By Remark 3.5, we observe that the action of T on Ux and Uy is independent from the
choice of the polynomial p. This implies that Aut◦(Dp) and Aut◦(Dq) are isomorphic
as abstract groups. If p and q are generic, i.e. there is no automorphism of C = A1

that permute their roots, then Γ is trivial and we have

Aut(Dp) ∼= (xC[x]+ ∗ yC[y]+) o (C∗ o Z/2Z) ∼= Aut(Dq).

Thus, Theorem A cannot be improved without additional assumptions. However,
if we require the groups Aut(Dp) and Aut(Dq) to be isomorphic as ind-groups, we
have the following result.

4.12 Theorem. Let ϕ : Aut◦(Dp) → Aut◦(Dq) be an isomorphism of ind-groups,
where p, q ∈ C[z] are polynomials with simple roots. Then, the varieties Dp and Dq

are isomorphic.

Proof. This theorem is proven in [9, Theorem 3].

Proof of Main Theorem B. Assume �rst deg p = 2. ThenDp is isomorphic to SL2 /T
by Lemma 2.13 and the claim follows by Proposition 2.14.

Consider now the case of deg p 6= 2. By Remark 1.28 X is normal. Hence, we
apply Main Theorem A and we note that X is isomorphic to Dq for q ∈ C[z]. By
Lemma 1.27, we derive that X ∼= Dq has simple roots, since X ∼= Dq is smooth.

Thus, there exists an ind-group isomorphism from Aut(Dp) to Aut(Dq). By
Lemma 2.10 ϕ induces an ind-group isomorphism from Aut◦(Dp) to Aut◦(Dq). It
follows from Theorem 4.12 that Dp and Dq are isomorphic as varieties. Thus, we
conclude that X is isomorphic to Dp as a variety.
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