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To prepeare this course I used the material from the literature in References.

1. LECTURE 1 (Introduction to Invariant Theory).

The notion of an invariant is one of the most general concepts of mathematics.
Whenever a group G acts on a set S we look for elements s ∈ S which do not change
under the action, i.e., which satisfy g · s = s for any g ∈ G. Let us introduce the formal
definition of a group action.

Definition 1. Let G be a group and let S be a set. An action of G on S is a map
· : G× S → S such that 1 · s = s and (gh) · s = g · (h · s) for all g, h ∈ G and s ∈ S.

The set of all elements s in S which satisfy g · s = s for any g ∈ G we denote by SG.
Of course, if a group G acts trivially on S, then SG = S.

Let us consider now one of the most basic non-trivial examples.

Example 1. Let the group

G =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
be the subgroup of the group of invertable 2 × 2 matrices GL(2,C) over the field of
complex numbers. Consider the two-dimensional vector space

W = Cw1 ⊕ Cw2

generated by two linearly independent vectors w1 and w2. Assume also that g ∈ G acts

on W by matrix multiplication, i.e.,

(
1 0
0 1

)
acts trivially on W and

(
0 1
1 0

)
maps

aw1 + bw2 to bw1 + aw2. Then it is easy to calculate that WG is the one-dimensional
vector space C(w1 + w2) generated by w1 + w2.

Roughly speaking, in this course we consider S to be a ring of polynomials endowed
with a certain action of G and study the set of invariant polynomials. In this intro-
ductory lecture we introduce the notion of polynomial functions on a G-module W
and the notion of invariants. Further, we consider some basic examples of invariants
of some groups.

During the whole course our basic field is the field of complex numbers C.
In the rest of Lecture 1 I closely follow [KrP14].
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1.1. Polynomial functions. Let W be a finite dimensional C-vector space. A func-
tion f : W → C is called polynomial if it is given by a polynomial in the coordinates
with respect to a basis of W . It is easy to see that this is independent of the choice of
a coordinate system of W . We denote by C[W ] the C-algebra of polynomial functions
on W which is usually called the coordinate ring of W or the ring of regular func-
tions on W . If w1, . . . , wn is a basis of W and x1, . . . , xn the dual basis of the dual
vector space W ∗ of W , i.e., the coordinate functions, we have C[W ] = C[x1, . . . , xn].
This is a polynomial ring in the xi.

A regular function f ∈ C[W ] is called homogeneous of degree d if f(tw) = tdf(w)
for all t ∈ C, w ∈ W . Thus, C[W ] = ⊕dC[W ]d is a graded C-algebra, where C[W ]d
denotes the subspace of homogeneous polynomials of degree d. (Recall that an algebra
A = ⊕IAi is graded if the multiplication satisfies AiAj ⊂ Ai+j). Choosing coordinates

as above we see that the monomials xd11 x
d2
2 . . . xdnn such that d1 + d2 + · · · + dn = d

form a basis of C[W ]d. Note that C[W ]1 = W ∗.

1.2. Invariants. As usual, we denote by GL(W ) the general linear group, i.e., the
group of non-degenerate linear maps from W to W . Choosing a basis w1, w2, . . . , wn
of W we can identify GL(W ) with the group GLn(C) of invertible n×n matrices with
entries in C in the usual way: the i-th column of the matrix A corresponding to the
automorphism g ∈ GL(W ) is the coordinate vector of g(wi) with respect to the chosen
basis. Now assume that there is given a subgroup G ⊂ GL(W ) or, more generally, a
group G together with a linear representation on W , i.e., a group homomorphism

ρ : G→ GL(W ).

Note that in this course all our representations are going to be linear and instead of
“linear representation” we will just use “representation”.

The homomorphism ρ induces the linear action (in the future just action) of G
on W as follows: g · w := ρ(g)w (g ∈ G,w ∈W ), and we will call W a G-module.

Recall that the dual vector space to W is defined by

W ∗ = {f : W → C | f(v + αw) = f(v) + αf(w)},
where v, w ∈ W and α ∈ C. If ρ : G → GL(W ) is a representation, then the dual
representation ρ∗ : G→ GL(W ∗) is defined by

(1) ρ∗(g)(f)(v) = f(ρ(g−1)v).

Remark 1. Let us check that this defines indeed a representation, i.e.,

(ρ∗(gh)(f))(v) = f(ρ((gh)−1)v) = f(ρ(h−1)ρ(g−1)v) = ρ∗(g)(f◦ρ(h−1))(v) = ρ∗(g)(ρ∗(h)(f))(v).

Now we define the action of G on C[W ] as follows: if x1, . . . , xn is a basis of W ∗, then
for each g ∈ G, g ·xi ∈W ∗ is defined by (1), i.e., g ·xi(v) = ρ∗(g)(xi)(v) = xi(ρ(g−1)v),
where i = 1, . . . , n. Further, let f(x1, . . . , xn) ∈ C[W ], then

g · f(x1, . . . , xn) = f(g · x1, . . . , g · xn) = f(ρ∗(g)(x1), . . . , ρ∗(g)(xn)).

Definition 2. A function f ∈ C[W ] is called G-invariant or shortly invariant if
f(gw) = f(w) for all g ∈ G and w ∈ W . The invariants form a subalgebra of C[W ]
called invariant ring and denoted by C[W ]G.
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Recall that the orbit of w ∈W is defined to be the subset Gw := {gw | g ∈ G} ⊂W
and the stabilizer of w it the subgroup Gw := {g ∈ G | gw = w}. It is clear that a
function is G-invariant if and only if it is constant on all orbits of G in W . A subset
X ⊂ W is called G-stable if it is a union of orbits, i.e., if one has gx ∈ X for all
x ∈ X, g ∈ G.

1.3. Orbit space.

Definition 3. Let G acts on a set S. We define an equivalence relation in the following
way:

x ∼ y if and only if y = gx (and x = g−1y) for some g ∈ G.
We call S/ ∼ the orbit space which we denote by S/G.

Suppose G is a finite group that acts linearly on a vector space W , i.e., G ⊂ GL(W ).
Then one can show that the orbit space W/G has a natural structure of an affine variety
(which we will define later on in this course). Moreover, as th polynomial ring C[W ]
can be treated as the “ring of functions” of W , C[W ]G is the ring of functions of the
orbit space W/G. So, the invariants are the functions on the orbit space.

1.4. Examples. Let us consider now the classical example of quadratic forms.

Example 2. Consider the 3-dimensional vector space of quadratic forms

W = {q(x, y) = a0x
2 + a1xy + a2y

2 | a0, a1, a2 ∈ C}.

Define an action of SL(2,C) on W by

σ · q(x, y) := q(αx+ γy, βx+ δy), σ =

(
α β
γ δ

)
∈ SL(2,C)

Let ti be the linear map from W to C that maps a polynomial a0x
2 +a1xy+a2y

2 to
the coefficient ai. The functions t0, t1 and t2 form a basis of the dual space W ∗. Hence,
the coordinate ring C[W ] can be identified with the ring of polynomials C[t0, t1, t2].

One can prove that C[W ]SL2 = C[t21− 4t0t2]. The term t21− 4t0t2 may be recognized
as the discriminant of a quadratic equation.

Example 3. Let ξ = e2πi/n be a complex primitive n-th root of unity and let µn =
〈ξ〉 ⊂ C∗ be the cyclic group of order n.

Let gξ : C2 → C2 be given by the map

gξ(a, b) = (ξa, ξ−1b),

where (a, b) ∈ C2. Then S = C[x, y], where

x(a, b) = a, y(a, b) = b

are the coordinate functions. So

(gξx)(a, b) = x(ξ−1a, ξb) = ξ−1a = ξ−1x(a, b) so gξx = ξ−1x, and

(gξy)(a, b) = y(ξ−1a, ξb) = ξb = ξ−1y(a, b) so gξy = ξy.
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Then xy, xn, yn are invariant under our action. We claim that any f(x, y) ∈ SG, i.e.,
any polynomial invariant under our action, is a polynomial in xy, xn, yn. Indeed, let
f(x, y) =

∑
i ai,jx

iyj , then

gξf(x, y) =
∑
i,j

ai,j(ξx)i(ξ−1y)j =
∑
i,j

ai,jξ
i−jxiyj = f =

∑
i,j

ai,jx
iyj .

Since {xryk | r, k ∈ N ∪ {0}} form a basis of C[x, y] we have that ξi−j = 1 (whenever
ai,j 6= 0) which implies that n divides |i− j|. Hence, the summund

ai,jx
iyj =

{
ai,j(xy)iyj−i if i < j

ai,j(xy)jxi−j if j < i.

of f belongs to C[xn, xy, yn]. Therefore, f(x, y) ∈ C[xn, xy, yn] and then SG = C[xn, xy, yn].

2. LECTURE 2 (More examples and Noether’s Theorem).

In this lecture we compute the ring of invariants for the multiplicative group of the
field and for a symmetric group and list a few important results in the invariant theory
of finite groups.

2.1. More example.

Example 4. We start with the two-dimensional representation of the multiplicative
group C∗ := GL1(C) on W = C2 given by

t 7→
(
t 0
0 t−1

)
.

Then the invariant ring is generated by xy: C[W ]C
∗

= C[xy]. Indeed, let f(x, y) =∑
i ai,jx

iyj be the polynomial invariant ander action of C∗, i.e.,∑
i,j

ai,jx
iyj =

∑
i

ai,j(tx)i(t−1y)j =
∑
i

ai,jt
i−jxiyj .

Since {xryk | r, k ∈ N ∪ {0}} form a basis of C[x, y] we have that ti−j = 1 whenever
ai,j 6= 0. Since this should hold for any t ∈ C∗, we get that i− j = 0.

Note that if we change the two-dimensional representation of the multiplicative group
C∗ := GL1(C) on W = C2 to the following one

t 7→
(
t 0
0 t

)
.

Then one can show that the invariant ring is trivial, i.e., C[V ]C
∗

= C.
So, the invariant ring depends dramatically on the action of the group.

The next example is classical and deals with invariants of a symmetric group.
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Example 5. Let Sn denote the symmetric group on {1, . . . , n} and consider the
natural representation of Sn on V = Cn given by σ · ei = eσ(i), or, equivalently

σ · (x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)).

As above, Sn acts on the polynomial ring C[x1, x2, . . . , xn] and the invariant functions
are the symmetric polynomials:

C[x1, . . . , xn]Sn = {f | f(xσ(1), . . . ) = f(x1, ...) for all σ ∈ Sn}.
It is well known and classical that every symmetric polynomial can be expressed

uniquely as a polynomial in the elementary symmetric functions h1, h2, . . . , hn defined
by

h1 := x1 + x2 + · · ·+ xn,

h2 := x1x2 + x1x3 + · · ·+ xn−1xn

. . .

hk :=
∑

i1<i2<···<ik

xi1xi2 . . . xik

. . .

hn := x1x2 . . . xn.

We will give a proof of this below.

Proposition 1. The elementary symmetric functions h1, h2, . . . , hn are algebraically
independent and generate the algebra of symmetric functions: C[x1, x2, . . . , xn]Sn =
C[h1, h2, . . . , hn]

Proof. We proof this by induction on n. Let h′1, h
′
2, . . . , h

′
n−1 denote the elementary

symmetric functions in the variables x1, x2, . . . , xn−1. Then

h1 = h′1 + xn,

h2 = h′2 + xnh
′
1,

. . .

hn−1 = h′n−1 + xnh
′
n−2,

hn = xnh
′
n−1,

hence hi ∈ C[h′1, . . . , h
′
n−1, xn]. Assume that the hi’s are algebraically dependent and let

F (h1, h2, . . . , hn) = 0 be an algebraic relation of minimal degree. Setting xn = 0 we ob-
tain the relation F (h′1, h

′
2, . . . , h

′
n−1, 0) = 0 between the h′i, hence F (z1, . . . , zn−1, 0) = 0

by induction. This implies that F is divisible by zn which contradicts the minimality.
Now let f ∈ C[x1, . . . , xn] be a symmetric polynomial. Since every homogeneous

component of f is symmetric, too, we can assume that f is homogeneous of some degree
N . If we write f in the form f =

∑
i fi(x1, . . . , xn−1)xin then all fi are symmetric in

x1, . . . , xn−1 and so, by induction,

fi ∈ C[h′1, . . . , h
′
n−1] ⊂ C[h1, . . . , hn−1, xn].

Thus f has the form f = p(h1, . . . , hn)+xnq(h1, . . . , hn, xn) with two polynomials p and
q. Again we can assume that p(h1, . . . , hn) and q(h1, . . . , hn, xn) are both homogeneous,
of degree N and N − 1, respectively. It follows that f − p is again homogeneous and
is divisible by xn. Since it is symmetric, it is divisible by the product x1x2 . . . xn, i.e.
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f − p = hnf with a symmetric polynomial f of degree at most N − n. Now the claim
follows by induction on the degree of f . �

In the next lectures we will introduce the notion of reflection group, give some
examples of reflection groups and state a theorem which shows why reflection groups
are so special in invariant theory.

2.2. Noether’s Theorem. First we claim that C[W ]G is a subring of C[W ] for any
group G. Indeed, assume f, h ∈ C[W ]G, i.e., f(x1, . . . , xn) = g · f(x1, . . . , xn) and
h(x1, . . . , xn) = g · h(x1, . . . , xn) for any g ∈ G. Then formulae

g · (f − h)(x1, . . . , xn) =g · f(x1, . . . , xn)− g · h(x1, . . . , xn) =

f(x1, . . . , xn)− h(x1, . . . , xn).

and

g · (fh)(x1, . . . , xn) = fh(g · x1, . . . , g · xn) =f(g · x1, . . . , g · xn)h(g · x1, . . . , g · xn) =

f(x1, . . . , xn)h(x1, . . . , xn).

show that f−h and fh are also invariants which shows that C[W ]G is indeed a subring
of C[W ].

We say that a subring ring R ⊂ C[x1, . . . , xn] is finitely generated if there are finitely
many r1, . . . , rn ∈ R which generate R, i.e., R = r1C[x1, . . . , xn]+ · · ·+rnC[x1, . . . , xn].

One of the basic results in the invariant theory of finite groups is the following.

Theorem 1 (E. Noether, 1916). For any representation W of a finite group G the ring
of invariants C[W ]G is generated by the invariants of degree less or equal to the order

of G. That is, the number of generators is at most

(
|G|+ n
n

)
, where dimW = n.

As an immediate implication of Theorem 1 we have the following result.

Corollary 1. For any representation W of a finite group G the ring of invariants
C[W ]G is finitely generated.

One may ask if Corollary 1 holds also for other, not necessarily finite groups. In
1900 David Hilbert presented his famous list of 23 problems on the International Con-
gress of Mathematics in Paris. These problems were very influential for 20th-century
mathematics. In particular, Hilbert’s fourteenth problem is the following.

Problem 1 (Hilbert’s Fourteenth Problem). Let K be a field and x1, . . . , xn alge-
braically independents elements over K. Let L be a subfield of K(x1, . . . , xn) containing
K. Is the ring K[x1, . . . , xn] ∩ L finitely generated over K?

The motivation for this problem is the following special case, connected with invari-
ant theory.

Problem 2. Let K be a field and G a subgroup of the full linear group GLn(K). Then
G acts naturally on polynomials K[x1, . . . , xn]. Is the ring of invariants K[x1, . . . , xn]G

finitely generated over K?
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David Hilbert proved that Corollary 1 (and equivalently Problem 2) holds NOT
ONLY for finite groups, but also for the so-called reductive groups which we will
define later in this course. For example, all classical groups such as GLn, SLn, the
orthogonal group O(n,C) and others are reductive.

Remark 2. The counterexample to fourteenth Hilbert’s problem was constructed by
Nagata in 1958. Actually Nagata found a subgroup G ⊂ GL(W ), where W = C32,
such that C[W ]G is not finitely generated.

Proof of Theorem 1. Set N = |G| and C[W ]<N = {f ∈ C[W ] | deg f ≤ N − 1}. Let
A be the subalgebra of C[W ]G generated by invariants of degree ≤ N . Our goal is to
prove that A = C[W ]G.

Consider the vector space B = A · C[W ]<N ⊂ C[W ]. Let ξ ∈ W ∗ = C[W ]1. Let us
prove that ξm ∈ B for any m ∈ N . If m < N , then this follows from the definition of
B. Next, consider the polynomial∏

σ∈G
(t− σξ) = tN + a1t

N−1 + · · ·+ aN ,

where ai ∈ C[W ]G and deg ai = i. Hence ai ∈ A for all i. Substituting t = ξ, we obtain

ξN ∈ A+ ξA+ · · ·+ ξN−1A.

By induction, we then obtain

ξm ∈ A+ ξA+ · · ·+ ξN−1A for any m ≥ N.
Therefore, we conclude that B = C[W ].

Now take an arbitrary f ∈ C[W ]G. As it follows from above f can be written as∑
i aifi, where ai ∈ A and fi ∈ C[W ]<N .
Let f 7→ f∗ denote the (degree-preserving) projection to G-invariants. Then

f = f∗ =
∑

aif
∗
i ,

where f∗i is an invariant of degree < N . Hence, f ∈ A, and we are done. �

Remark 3. In connection with Theorem 1, Schmid introduced in a numerical invariant
β(G) for every finite group G. It is defined to be the minimal number m such that for
every representation W of G the invariant ring C[W ]G is generated by the invariants
of degree less or equal to m. By Noether’s Theorem above we have β(G) ≤ |G|. Schmid
shows that β(G) = |G| if and only if G is cyclic. In general, it is rather difficult to
calculate β(G), except for small groups. For example,

β(Z/2× Z/2) = 3, β(S3) = 4, β(S4) = 10; β(D2n) = n+ 1,

where D2n denotes the dihedral group of order 2n. For the symmertic group Sn we can
find a lower bound by looking at large cyclic subgroups. Denote by γ(n) the maximal
order of an element of Sn. Then we have

β(Sn) ≥ γ(n) and ln γ(n) ∼
√
n lnn,

where f(n) ∼ g(n) means that limn→∞
f(n)
g(n) = 1. In particular, β(Sn) grows more

rapidly than any power of n.
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3. LECTURE 3 (Hilbert-Poincaré series and Molien’s theorem).

3.1. Hilbert-Poincaré series. Let V =
⊕∞

d=0 Vd be a direct sum of finite dimensional
vector spaces Vd. The Hilbert-Poincaré series H(V, t) is the formal power series in t
defined by

(2) H(V, t) :=

∞∑
d=0

dim(Vd)t
d

and encodes in a convenient way the dimensions of the vector spaces Vd. In this lecture,
V will usually be the vector space C[W ]G of polynomial invariants with respect to the
action of a group G, where Vd is the subspace of invariants homogeneous of degree d.

Example 6. Taking the polynomial ring in one variable, the Hilbert-Poincaré series
is given by

H(C[x], t) = 1 + t+ t2 + · · · = 1

1− t
.

Similarly, one shows that

H(C[x1, . . . , xn], t) =
∞∑
d=0

(
d+ n− 1

n− 1

)
td =

(1 + t+ t2 + . . . ) . . . (1 + t+ t2 + . . . ) =
1

(1− t)n
.

Lemma 1. Let f1, . . . , fk ∈ C[x1, . . . , xn] be algebraically independent homogeneous
polynomials, where fi has degree di. Show that the Hilbert-Poincaré series of the sub-
algebra generated by the fi is given by

H(C[f1, . . . , fk], t) =
1∏k

i=1(1− tdi)
Proof. Since the polynomials f1, . . . , fk are algebraically independent, the set

{f i11 f
i2
2 . . . f ikk | i1, i2, . . . , ik ∈ N and i1d1 + i2d2 + . . . ikdk = d}

is a basis for the C-vector space C[f1, . . . , fn]d of degree d elements in C[f1, . . . , fn].
Hence the dimension of C[f1, . . . , fn]d equals the cardinality of the set

Ad = {(i1, i2, . . . , ik) ∈ Nk | i1d1 + i2d2 + · · ·+ ikdk = d}.
The expansion

1∏k
i=1(1− tdi)

=
1

(1− td1)

1

(1− td2)
. . .

1

(1− tdk)
=

(

∞∑
i1=0

ti1d1)(

∞∑
i2=0

ti2d2) . . . (

∞∑
ik=0

tikdk) =

∞∑
d=0

∑
(i1,i2,...,ik)∈Ad

td =

∞∑
d=0

|Ad|td

proves the claim of Lemma 1. �
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Example 7. Consider the action of the group G of order 3 on C[x, y] induced by
the linear map x 7→ ξ3x, y 7→ ξ−1

2 , where ξ3 is a third root of unity. By Example 3,
C[x, y]G = C[x3, y3, xy]. In fact, x3 and y3 are algebraically independent, and

C[x, y]G = C[x3, y3]⊕ C[x3, y3]xy ⊕ C[x3, y3](xy)2

Since H(C[x3, y3], t) = 1
(1−t3)2

, we obtain

H(C[x, y]G, t) =
1 + t2 + t4

(1− t3)2
.

Exercise 1. Compute the Hilbert-Poincaré series of C[x2, y2, xy].

3.2. Molien’s theorem. For finite groups G that acts on C[W ] = C[x1, . . . , xn], it is
possible to compute the Hilbert-Poincaré series of C[x1, . . . , xn]G directly, without prior
knowlegde about the generators. This is captured in the following beautiful theorem
of Molien.

Theorem 2 (Molien’s Theorem). Let ρ : G → GL(W ) be a representation of a finite
group on a finite dimensional vector space W . Then the Hilbert-Poincaré series of
C[W ]G is given by

(3) H(C[W ]G, t) =
1

|G|
∑
g∈G

1

det(Id−ρ(g)t)
.

Before starting the proof of the theorem we need the following remark.

Remark 4. if g ∈ GL(W ) is a matrix of finite order k, then we claim that g is
diagonalizable, i.e., there exists h ∈ GL(W ) such that hgh−1 is diagonal. Indeed,
since gk = 1, we have that the minimal polynomial pg(t) divides xk− 1. Since all roots

of xk − 1 are different, all roots of pg(t) are different too. Therefore, from the course
of Linear Algebra we conclude that g is diagonalizable.

Proof of Theorem 2. Consider the action of G on C[W ] induced by the representation
ρ. Denote for g ∈ G and d ∈ N by Ld(g) ∈ GL(C[W ]d) the linear map corresponding
to the action of g ∈ G on the homogeneous polynomials C[W ]d of degree d. So L1(g) =
ρ∗(g).

The linear map

πd :=
1

|G|
∑
g∈G

Ld(g) : C[W ]d → C[W ]d

is a projection onto C[W ]Gd . That is, πd(p) ∈ C[W ]Gd for all p ∈ C[W ]d and πd is the

identity on C[W ]Gd . It follows that tr(πd) = dim(C[W ]Gd ) (please, check this equality).
This gives:

(4) H(C[W ]G, t) =
1

|G|
∑
g∈G

∞∑
d=0

tr(Ld(g))td.

Now lets fix an element g ∈ G and compute the inner sum
∑∞

d=0 tr(Ld(g))td. From
Remark 4 it follows that there exists a basis x1, . . . , xn of W ∗ that is a system of
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eigenvectors for L1(g), say L1(g)xi = λixi. Then the monomials in x1, . . . , xn of degree
d form a system of eigenvectors of Ld(g) with eigenvalues given by:

Ld(g)xd11 . . . xdnn = λd11 . . . λdnn x
d1
1 . . . xdnn

for all d1 + · · ·+ dn = d. It follows that
∞∑
d=0

tr(Ld(g))td =(1 + λ1t+ λ2
1t+ . . . ) . . . (1 + λnt+ λnt

2 + . . . ) =(5)

1

1− λ1t
. . .

1

1− λnt
=

1

det(Id−L1(g)t)
.(6)

Using the fact that for every g the equality det(Id−L1(g)t) = det(Id−ρ(g−1)t) holds
and combining equations (4) and (5)-(6), we arrive at

H(C[W ]G, t) =
1

|G|
∑
g∈G

∞∑
d=0

tr(Ld(g)) =
1

|G|
∑
g∈G

1

det(Id−ρ(g−1)t)
=

1

|G|
∑
g∈G

1

det(Id−ρ(g)t)
,

where the last equality follows by changing the order in which we sum over G. This
completes the proof. �

Example 8. Consider again the action of a cyclic group G of order 3 on C[x, y] induced
by the linear map x 7→ ξx, y 7→ ξ−1y, where ξ is a third root of unity. Using Molien’s
theorem, we find

H(C[x, y]G, t) =
1

3

(
1

(1− t)(1− t)
+

1

(1− ξt)(1− ξ2t)
+

1

(1− ξ2t)(1− ξt)

)
.

A little algebraic manipulation and the fact that

(1− ξt)(1− ξ2t) = (1− (ξ + ξ2)t+ ξ3t2) = (1 + t+ t2)

(as ξ3 = 1 and hence the expression 0 = ξ3 − 1 = (ξ − 1)(ξ2 + ξ + 1) implies that
ξ2 + ξ + 1 = 0) shows that

H(C[x, y]G, t) =
(1− t+ t2)(1 + t+ t2)

(1− t)2(1− ξt)2(1− ξ2t)2
=

1 + t2 + t4

(1− t3)2

Since this is equal to the Hilbert-Poincaré series of C[x3, y3, xy] (see Example 7), we
obtain as a byproduct that the invariant ring is indeed generated by the three invariants
x3, y3 and xy.

Exercise 2. Let G be the matrix group generated by A,B ∈ GL2 given by

A :=

(
i 0
0 −i

)
, B :=

(
0 1

−1 0

)
.

Use Molien’s theorem to prove that the Hilbert series of C[x, y]G is given by

H(C[x, y]G, t) =
1 + t6

(1− t4)2
.
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Find algebraically independent invariants f1, f2 of degree 4 and a third invariant f3 of
degree 6, such that C[x, y]G = C[f1, f2]⊕ C[f1, f2]f3.

4. LECTURE 4 (Brief Introduction to Commutative Algebra and
Algebraic Geometry).

Three of Hilbert’s fundamental contributions to modern algebra, namely, the Null-
stellensatz, the Basis Theorem and the Syzygy Theorem, were first proved as lemmas
in his invariant theory papers from 1890 and 1893. In this course we will need first two
from these three theorems which we present in this section.

We start with introducing a so-called Zariski topology.

4.1. Zero sets and Zariski topology. We now define the basic object of algebraic
geometry, namely the zero set of regular functions. Let W be a finite dimensional vector
space.

Definition 4. If f ∈ C[W ], then we define the zero set of f by zero set

V(f) := {w ∈W | f(w) = 0} = f−1(0).

More generally, the zero set of f1, f2, . . . , fs ∈ C[W ] or of a subset S ⊂ C[W ] is defined
by

V(f1, f2, . . . , fs) := ∩wi=1V(fi) = {w ∈W | f1(w) = · · · = fs(w) = 0}
or

V(S) := {w ∈W | f(w) = 0 for all f ∈ S}

Remark 5. The following properties of zero sets follow immediately from the defini-
tion.

(1) Let S ⊆ C[W ] and denote by a = (S) ⊆ C[W ] the ideal generated by S. Then
V(S) = V(a).

(2) If S ⊆ T ⊂ C[W ], then V(S) ⊇ V(T ).
(3) For any family (Si)i∈I of subset Si ⊂ C[W ] we have

V(∪i∈ISi) = ∩i∈IV(Si).

Lemma 2. Let W be a finite dimensional vector space and let a, b be ideals in O(W )
and (ai | i ∈ I) a family of ideals of C[W ].

(1) If a ⊆ b, then V(a) ⊇ V(b).
(2) ∩i∈IV(ai) = V(

∑
i∈I ai).

(3) V(a) ∪ V(b) = V(a ∩ b) = V(a · b).
(4) V(0) = W and V(1) = ∅.

Proof. Properties (1) and (2) follow from Remark 5, and property (4) is easy. So we are
left with property (3). Since a ⊇ a∩b ⊇ a ·b, it follows from (1) that V(a) ⊆ V(a∩b) ⊆
V(a · b). So it remains to show that V(a · b) ⊆ V(a) ∪ V(b). If v ∈ W does not belong
to V(a) ∪ V(b), then there are functions f ∈ a and h ∈ a such that f(v) 6= 0 6= h(v).
Since fh ∈ a · b and (fh)(v) 6= 0 we see that v /∈ V(a · b), and the claim follows. �



12

Definition 5. The lemma shows that the subsets V(a) where a runs through the ideals
of C[W ] form the closed sets of topology on W which is called Zariski topology. From
now on all topological terms like “open”, “closed”, “neighborhood”, “continuous”, etc.
will refer to the Zariski topology.

Example 9. (0) Let us consider the vector space of all matrices

Mn(C) =


a11 a12 . . . a1n

. . .
an1 an2 . . . ann

 | aij ∈ C, where 1 ≤ i, j ≤ n

 .

This is the vector space of dimension n2.
(1) The subset SLn(C) ⊂ Mn(C) of those matricies which have determinant 1 is the

closed subset in Zariski topology. Indeed,

SLn(C) =

A =

a11 a12 . . . a1n

. . .
an1 an2 . . . ann

 ∈ Mn(C) | detA− 1 = 0

 .

Since detA is a polynomial in variables aij , where 1 ≤ i, j ≤ n, we have that SLn(C) ⊂
Mn(C) is a closed subset.

(2) Consider the closed subset

S =

{(
a b
c d

)
∈ Mn(C) | b, c = 0, ad = 1

}
of the vector space M2(C). It is easy to see that S can be identified with C∗. Therefore,
C∗ is a closed subset of M2(C).

Definition 6. Let X ⊂ W be a closed subset. A regular function on X is defined to
be the restriction of a regular function on W :

C[X] := {f |X | f ∈ C[W ]}.

The kernel of the (surjective) restriction map res : C[W ]→ C[X] is called the vanishing
ideal of X, or shortly the ideal of X:

I(X) := {f ∈ C[W ] | f(x) = 0 for all x ∈ X}.

Thus, we have a canonical isomorphism C[W ]/I(X)
∼−→ C[X] of rings.

4.2. Hilbert’s Nullstellensatz. The famous Nullstellensatz of Hilbert appears in
many different forms which are all more or less equivalent. We will give some of them
in this section.

Definition 7. If a is an ideal of an arbitrary ring R, its radical
√
a is defined by

√
a := {r ∈ R | rm ∈ a for some m > 0}.

Clearly,
√
a is an ideal and

√√
a =
√
a. Moreover,

√
a = R implies that a = R. The

ideal a is called radical if a =
√
a. The ring R is called reduced if

√
(0) = (0), or,

equivalently, if R contains no nonzero nilpotent elements. Also, if a ⊂ C[W ] is an ideal,
then V(a) = V(

√
a), hence I(X) is radical for every X ⊆W .
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Theorem 3 (Hilbert’s Nullstellensatz). Let a ⊆ C[W ] be an ideal and X := V(a) ⊂W
its zero set. Then

I(X) = I(V(a)) =
√
a.

A first consequence is that every proper ideal has a non-empty zero set, because
X = V(a) = ∅ implies that

√
a = I(X) = C[W ] and so a = C[W ].

Corollary 2. For every ideal a 6= C[W ] we have V(a) 6= ∅.
Let m ⊆ C[x1, . . . , xn] be a maximal ideal and a = (a1, . . . , an) ∈ V(m) which exists

by the previous corollary. Then m ⊆ (x1−a1, . . . , xn−an), and so these two are equal.

Corollary 3. Every maximal ideal m of C[x1, . . . , xn] is of the form

m = (x1 − a1, . . . , xn − an).

Exercise 3. Let a ⊂ R be an ideal of a (commutative) ring R. Then a is perfect if and
only if the residue class ring R/a has no nilpotent elements different from 0.

Proof of Theorem 3. We first prove Corollary 3. It also implies Corollary 2, because
every proper ideal is contained in a maximal ideal.

Let m ⊂ C[x1, . . . , xn] be a maximal ideal and denote by K = C[x1, . . . , xn]/m its
residue class field. ThenK contains C and has a countable C-basis, because C[x1, . . . , xn]
does. If K 6= C and p ∈ K \C, then p is transcendental over C. It follows that the ele-
ments ( 1

p−a | a ∈ C) from K form a non-countable set of linearly independent elements

over C. This contradiction shows that K = C. Thus xi + m = ai + m for a suitable
ai ∈ C (for i = 1, . . . , n), and so m = (x1 − a1, . . . , xn − an). This proves Corollary 3.

To get the theorem, we use the so-called trick of Rabinowich. Let a ⊂ C[x1, . . . , xn]
be an ideal and assume that the polynomial f vanishes on V(a). Now consider the
polynomial ring R = C[x0, x1, . . . , xn] in n+1 variables and the ideal b = (a, 1−x0f) ⊂
R generated by 1 − x0f and the elements of a. Clearly, V(b) = ∅ and so 1 ∈ b, by
Corollary 2. This means that we can find an equation of the form∑

i

hifi + h(1− x0f) = 1

where fi ∈ a and hi, h ∈ R. Now we substitute 1
f for x0 and find∑

i

hi(
1

f
, x1, . . . , xn)fi = 1.

Clearing denominators finally gives
∑

i h̃ifi = fm for some m ∈ N, i.e., fm ∈ a, and
the claim follows. �

Corollary 4. For any ideal a ⊂ C[W ] and its zero set X = V(a) we have

C[X] = C[W ]/
√
a.

Example 10. Let f ∈ C[x1, . . . , xn] be an arbitrary polynomial and consider its

decomposition into irreducible factors: f = pr11 p
r2
2 . . . prss . Then

√
(f) = (p1p2 . . . ps)

and so the ideal (f) is radical if and only if the polynomial f is square-free. In particular,
if f ∈ C[x1, . . . , xn] is irreducible, then C[V(f)] = C[x1, . . . , xn]/(f). A closed subset
of the form V(f) is called a hypersurface.
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Exercise 4. If X ⊂ V is a closed subset and m ⊂ C[X] a maximal ideal, then
C[X]/m = C. Moreover, m = ker(evx : f 7→ f(x)) for a suitable x ∈ X.

4.3. Hilbert Basis Theorem.

Definition 8. A ring R is called Noetherian if every ideal in R is finitely generated,
i.e. is of the form (a1, a2, . . . , an) for some a1, a2, . . . , an ∈ R.

Lemma 3. Let R be a commutative ring. Then, R is Noetherian if and only if every
ascending chain of ideals

a1 ⊆ a2 ⊆ a3 ⊆ . . .
in R stabilizes, i.e there exists m ∈ N with am = am+1 = am+2 = . . .

Proof. Assume R is Noetherian. Given an ascending chain of ideals in R

a1 ⊆ a2 ⊆ a3 ⊆ . . .
Let a = ∪∞n=1an. It is routine to check that a is an ideal. Since a is finitely generated,
a = (a1, a2, . . . , as), and so there exists m ∈ N such that a1, a2, . . . , as ∈ am. Now it is
clear that am = am+1 = am+2 = . . . and so the chain stabilizes, as desired. Conversely,
assume a ⊆ R is an ideal. We want to show that a is finitely generated ideal. Choose
a1 ∈ a and set a1 = (a1). If a = a1, we are done. Otherwise, choose a2 ∈ a \ a1 and set
a2 = (a1, a2). Proceed to define a2, a3, . . . in this manner, and set an = (a1, a2, . . . , an).
If a = an for some n ∈ N, then we are done. Otherwise,

a1 ! a2 ! a3 ! . . .

is a strictly ascending chain of ideals, contradiction. �

Example 11. (1) a field is the example of a Noetherian ring as it has only two ideals.
(2) The polynomial ring in infinitely many variables R[x1, x2, . . . ] is not Noetherian.

Theorem 4 (Hilbert Basis Theorem). If R is Noetherian, then R[x] is Noetherian
too.

Proof. Assume, to the contrary, that there exists an ideal a ⊆ R[x] which is not finitely
generated. Then, a 6= (0). Choose an element f(x) ∈ a of minimal degree, with degree
d1. Set a1 = (f1) ⊂ R[x]. Since a is not finitely generated, a 6= a1. Choose f2(x) ∈ a\a1

of minimal degree d2. Set a2 = (f1, f2). Continue to define f3, f4, . . . in this manner.
Note that d1 ≤ d2 ≤ d3 ≤ . . . . Let ai be the leading coefficient of fi(x). Then,

(a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ . . .
is an ascending chain of ideals in R. Thus, am+1 ∈ (a1, a2, . . . , am) for some m ∈ N. In
other words,

am+1 = r1a1 + r2a2 + · · ·+ rmam
for some r1, r2, . . . , rm ∈ R. Now, set

gm+1 = fm+1 −
m∑
i=1

rix
dm+1−difi.

The xdm+1 term cancels out, and this polynomial gm+1 has a degree strictly less than
dm+1. On the other hand, gm+1 /∈ am, because otherwise it would imply fm+1 ∈ am
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which would be a contradiction. The fact that gm+1 /∈ am contradicts the minimality
of degree of fm+1. �

5. LECTURE 5 (Reflection Groups and their invariants).

Definition 9. A (complex) reflection σ (sometimes also called pseudoreflection or
unitary reflection) of a finite-dimensional complex vector space W is an element σ ∈
GL(W ) of finite order that fixes a complex hyperplane pointwise, that is, the fixed-
space Fix(σ) = ker(σ − IdW ) has codimension 1.

A (finite) reflection group G is a finite subgroup of GL(W ) that is generated by
reflections.

In the next lecture we will prove the following result.

Theorem 5 (Shephard-Todd-Chevalley, 1954). For any representation W of a finite
group G the ring of invariants C[W ]G is isomorphic to a polynomial ring if and only
if G is a reflection group.

Theorem 5 was first proved for real reflection groups by Shephard and Todd in
1954, and subsequently generalized to the complex case by Chevalley in 1955.

Consider now a few classical examples of reflection groups.

Example 12. Let G ⊂ GL(C2) be a subgroup generated by

(
0 1
1 0

)
. From Example

1 it follows that G is a reflection group as Fix(

(
0 1
1 0

)
) is a one-dimensional vector

subspace of C2.

Example 13. Let Sn be the symmetric group that acts on n-dimensional vector space
W = Cn in the following way: (i, j) ∈ Sn acts on W by permuting i-th and j-th coor-
dinates. By Proposition 1 we have that C[x1, x2, . . . , xn]Sn is generated by n elements.
Hence, by Theorem 5, Sn is a reflection group.

Now let us show directly that Sn is a reflection group. Indeed, since Sn is generated
by elements of the form (i, j), where i, j ∈ {1, . . . , n}, i < j and

Fix((i, j)) = {(a1, . . . , an) | ai = aj}
is a hyperplane in W = Cn we conclude that Sn is a reflection group.

Example 14. Let G = Dk be the dihedral group, i.e., the group of symmetries of a
regular k-gon centerd at the origin. As a subgroup of GL2 (which naturally acts on
two-dimenisoanl vector space C2), it is generated by

rk =

(
cos(2π/k) − sin(2π/k)
sin(2π/k) cos(2π/k)

)
, s =

(
1 0
0 −1

)
.

Thus, Dk = {riksj | i = 0, 1, 2, . . . , k−1; j = 1, 2}. It is easy to see that Dk is generated
by s and rks. Moreover, both s and rks have order 2 and

Fix(s) = {(a, 0) | a ∈ C}
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and

Fix(rs) = {(r2k

(
a
0

)
)t | a ∈ C},

where

(
c
d

)t
means the transpose vector (c, d). Therefore, both Fix(s) and Fix(xs) are

one-dimenional vector subspaces in C2 which implies that Dk is the reflection group.

Exercise 5. Let the dihedral group G = 〈rk, s〉 ' Dk acts on C[x, y] in the follwoing
way: let ξk := exp(2πi

k ) ∈ C∗ be a k-th primitive root of unity, and let

ρk : G→ GL2(C) : rk 7→
(
ξk 0
0 ξ−1

k

)
, s 7→

(
0 1
1 0

)
be a representation of G. Prove that C[x1, x2]Dk = C[x1x2, x

k
1 + xk2].

For the proof of Theorem 5 we will need a so-called Reynolds operator which we
define in the following way:

∗ : C[x1, . . . , xn]→ C[x1, . . . , xn]G, f 7→ f∗ =
1

|G|
∑
g∈G

g · f.

The following proposition follows immediately from the definition of Reynolds op-
erator.

Proposition 2. The Reynolds operator ∗ has the following properties.
(a) ∗ is a C-linear map, i.e., (λf + µh)∗ = λf∗ + µh∗ for all f, h ∈ C[x1, . . . , xn]

and λ, µ ∈ C.
(b) ∗ restricts to the identity map on C[x1, . . . , xn]G, i.e., f = f∗ for all invariants

f ∈ C[x1, . . . , xn]G.
(c) (hf)∗ = h∗f for all h ∈ C[x1, . . . , xn] and f ∈ C[x1, . . . , xn]G.

Now we start with some lemmata in order to prove Theorem 5. Let σ ∈ GL(Cn) be
any reflection. Then the kernel of the linear transformation σ − Id is a hyperplane Hσ

in W = Cn. Let Lσ denote the linear polynomial whose zero set is the hyperplane Hσ.

Lemma 4. For all polynomials f ∈ C[x1, . . . , xn], the linear polynomial Lσ is a divisor
of σf − f .

Proof. Given v ∈ Cn with Lσ(v) = 0, we have

v ∈ Hσf ⇒ σv = v ⇒ f(σv) = f(v)⇒ (σf − f)(v) = 0.

Since the linear polynomial Lσ is irreducible, Hilbert’s Nullstellensatz implies that
σf − f is a multiple of Lσ. �

In the following let G ⊂ GL(Cn) be a finite reflection group. Let IG denotes the ideal
in C[x1, . . . , xn] which is generated by all homogeneous invariants of positive degree.

Proposition 3. Let h1, h2, . . . , hm ∈ C[x1, . . . , xn] be homogeneous polynomials, let
f1, f2, . . . , fm ∈ C[x1, . . . , xn]G be invariants, and suppose that f1h1 + f2h2 + · · · +
fmhm = 0. Then either h1 ∈ IG, or f1 is contained in the ideal 〈f2, . . . , fm〉 in
C[x1, . . . , xn].
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Proof. We proceed by induction on the degree of h1. If h1 = 0, then h1 ∈ IG. If
deg h1 = 0, then h1 is a constant and hence f1 ∈ 〈f2, . . . , fm〉. We may therefore
assume deg h1 > 0 and that the assertion is true for smaller degrees. Suppose that
f1 /∈ 〈f2, . . . , fm〉.

Let σ ∈ G be any reflection. Then

m∑
i=1

fiσ(hi) = σ(
m∑
i=1

fihi) = σ(0) = 0.

By Lemma 4, we can write σhi = hi +Lσh̃i, where h̃i is a homogeneous polynomial of
degree deg hi − 1. We get

0 =

m∑
i=1

gi(hi + Lσh̃i) = Lσ(

m∑
i=1

fih̃i),

and consequently f1h̃1 + f2h̃2 + · · ·+ fmh̃m = 0. By the induction hypothesis, we have
h̃1 ∈ IG, and therefore σh1 − h1 = h̃1Lσ ∈ IG.

Now let π = σ1σ2 . . . σl be an arbitrary element of G, written as a product of
reflections. Since the ideal IG is invariant under the action of G,

πh1 − h1 =
l−1∑
i=0

(σ0 . . . σiσi+1h1 − σ0 . . . σih1) =
l−1∑
i=0

(σ0 . . . σi)(σi+1h1 − h1) ∈ IG,

where σ0 is the identity element of G. This implies that

1

|G|
∑
π∈G

(πh1 − h1) =
1

|G|
∑
π∈G

(πh1)− h1 ∈ IG

and consequently since 1
|G|
∑

π∈G(πh1) ∈ IG (please, check this) we conclude that

h1 ∈ IG. �

In the next lecture we will prove Theorem 5.

6. LECTURE 6 (Proof of Theorem 5).

Proof of Theorem 5 (if-part). By Hilbert’s basis theorem, there exists a finite set 〈f1, f2,
. . . , fm〉 ⊂ C[x1, . . . , xn] of homogeneous invariants which generates the ideal IG. We
claim that

(7) C[x1, . . . , xn]G = C[f1, . . . , fm].

Indeed, assume the contrary, let f be a homogeneous element of minimum degree
in C[x1, . . . , xn]G \ C[f1, f2, . . . , fm]. Since f ∈ IG, we have f =

∑s
j=1 hjfj for some

homogeneous polynomials hj ∈ C[x1, . . . , xn] of degree less than deg f . Applying the
Reynolds operator on both sides of this equation we get

f = f∗ = (
s∑
j=1

hjfj)
∗ =

s∑
j=1

h∗jfj
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by Proposition 2. The new coefficients h∗j are homogeneous invariants whose degree is

less than deg f . From the minimality assumption on f we get h∗j ∈ C[f1, . . . , fm] and

therefore f ∈ C[f1, . . . , fm], which is a contradiction to our assumption. This proves
(7).

Suppose now that m is minimal with the property that IG = 〈f1, . . . , fm〉, i.e., no
smaller set of homogeneous invariants generates IG. We need to prove that m = n, or,
equivalently, that the invariants f1, f2, . . . , fm are algebraically independent over C.

Our proof is by contradiction. Suppose there exists a nonzero polynomial F ∈
C[y1, y2, . . . , ym] such that F (f1, f2, . . . , fm) = 0 in C[x1, . . . , xn]. We may assume that
F is of minimal degree and that all monomials xi1xi2 . . . xinn occurring (before cancel-
lation) in the expansion of F (f1, f2, . . . , fm) have the same degree d = i1 + i2 + . . . in.

For i = 1, 2, . . . ,m consider the invariant

Fi =
∂F

∂yi
(f1, f2, . . . , fm) ∈ C[x1, . . . , xn]G.

Each Fi is either 0 or of degree d− deg fi. Since F (y1, . . . , ym) is not a constant, there
exists an i with ∂F

∂yi
(y1, y2, . . . , ym) 6= 0, and hence, Fi 6= 0, by the choice of F.

Let J denote the ideal in C[x1, . . . , xn] generated by 〈F1, F2, . . . , Fm〉, and relabel
if necessary so that J is generated by 〈F1, . . . , Fk〉 but no proper subset. For i =

k + 1, . . . ,m write Fi =
∑k

j=1 hijFj , where hij is either 0 or homogeneous of degree
degFi − degFj = deg fj − deg fi. We have

0 =
∂

∂xs
(F (f1, f2, . . . , fm)) =

m∑
i=1

Fi
∂fi
∂xs

=

k∑
i=1

Fi
∂fi
∂xs

+

m∑
i=k+1

(

k∑
j=1

hijFj)
∂fi
xs

=

k∑
i=1

Fi(
∂fi
∂xs

+
m∑

j=k+1

hji
∂fj
∂xs

).

Since F1 6∈ 〈F2, . . . , Fk〉, Proposition 3 implies

∂f1

∂xs
+

m∑
j=k+1

hj1
∂fj
∂xs
∈ IG for s = 1, . . . , n.

Multiplying with xs and summing over s, we can apply Euler’s formula to find

n∑
s=1

xs
∂f1

∂xs
+

m∑
j=k+1

hj1

n∑
s=1

xs
∂fj
∂xs

=(deg f1)f1 +

m∑
j=k+1

hj1(deg fj)fj ∈

〈x1, . . . , xn〉IG ⊂ 〈x1f1, . . . , xnfn〉+ 〈f2, . . . , fm〉.

All monomials in this polynomial are of degree deg(f1), and therefore

deg(f1)f1 +

m∑
j=k+1

hj1(deg fj)fj ∈ 〈f2, . . . , fm〉.

The last expression implies f1 ∈ 〈f2, . . . , fm〉, which is a contradiction to the minimality
of m. This completes the proof of the “if”-part of Theorem 5. �
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Remark 6. The first paragraph of (if-part) proof of Theorem 5 implies the remark-
able statement that every ideal basis {f1, . . . , fm} of homogeneous elements of IG is
automatically an algebra basis for C[x1, . . . , xn]G.

There is a simple criterion for the algebraic independence of n polynomials f1, . . . , fn
in n indeterminates x1, . . . , xn, expressed in terms of the Jacobian determinant. We
will need this in (only if-part) of the proof of Theorem 5. Write jac(f1, . . . , fn) for the

determinant of the n× n matrix whose (i, j)-entry is ∂fi
∂xj

.

Proposition 4 (Jacobian Criterion). The polynomials f1, . . . , fn ∈ C[x1, . . . , xn] are
algebraically independent if and only if jac(f1, . . . , fn) 6= 0.

Proof. One implication is starightforward. Suppose the polynomials are algbraically
dependent, so that h(f1, . . . , fn) = 0 for some nonzero polynomial h(y1, . . . , yn). We
may assume that the dgree of h is as small as possible. For each fixed j, differentiate
this relation with respect to xj we get an equation:

(8)
n∑
i=1

∂h

∂yi
(f1, . . . , fn)

∂fi
∂xj

= 0.

This equation for 1 ≤ j ≤ n form a system of linear equations over the field C(x1, . . . , xn)
with coefficient matrix of determinant jac(f1, . . . , fn) and with ”unknowns”

(9)
∂h

∂yi
(f1, . . . , fn).

Because h is not constant, not all of the partial derivatives ∂h
∂yi

can vanish; since each

has smaller degree than h, the choice of h shows that the polynomials (9) cannot all
be 0. Thus the linear system has a nontrivial solution, forcing its coefficient matrix to
have determinant zero.

The reverse implication is less transparent. Suppose f1, . . . , fn are algebraically in-
dependent. Since C(x1, . . . , xn) has transcendence degree n over C, the polynomials
xi, f1, . . . , fn are algebraically dependent for each fixed i. Let hi(y0, y1 . . . , yn) be a
polynomial of minimal positive degree for which

hi(xi, f1, . . . , fn) = 0.

Now differentiate the last equation with respect to xk to obtain:

(10)

n∑
j=1

∂hi
∂yj

(xi, f1, . . . , fn)
∂fj
∂xk

+
∂hi
∂y0

(xi, f1, . . . , fn)δik = 0,

where

δik =

{
1, if i = k,

0, if i 6= k.

Since the fj ’s are algebraically independent, hi must have positive degree in y0. So
∂hi/∂xi is nonzero and of smaller degree than hi, forcing the value of this polynomial
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at xi, f1, . . . , fn to be nonzero. Transpose these terms to the right side of the equations
(10) for 1 ≤ i, k ≤ n, and write the equations in matrix form as(∂hi

∂yj

)( ∂fi
∂xj

)
= −

(
δij
∂hi
∂xj

)
.

The matrix on the right side of the last equation is a diagonal matrix with nonzero
determinant, so the Jacobian determinant on the left side is also nonzero. �

In the rest of this section we do not assume any longer that G is a reflection group.

Lemma 5. Let r be the number of reflections in a finite matrix group G ⊂ GL(Cn).
Then the Laurent expansion of the Molien series about z = 1 begins

HG(t) =
1

|G|
(1− t)−n +

r

2|G|
(1− t)−n+1 +O(

1

(1− t)n−2)
.

Proof. Recall from Theorem 2 the representation

H(t) =
1

|G|
∑
σ∈G

1

det(Id−ρ(g)t)
.

The only term det(Id−ρ(g)t) in this sum to have a pole of order n at t = 1 is the term
1

det(1−t)n corresponding to the identity matrix in G. If 1
det(1−t) has a pole of order n−1

at t = 1, then σ is a reflection and

1

det(1− σt)
=

1

(1− t)n−1

1

1− det(σ · t)
Hence the coefficient of 1

det(1−t)n−1 in the Laurent expansion of HG(t) equals

1

|G|
∑
σ∈G

1

(1− detσ)
,

where the sum ranges over all reflections σ in G. Since σ is a reflection if and only if
σ−1 is a reflection and detσ = detσ−1 = −1 we conclude

2
∑
σ∈G

1

1− detσ
=
∑
σ∈G

(
1

1− detσ
+

1

1− (detσ)−1
) =

∑
σ∈G

1 = r.

The proof follows. �

Corollary 5 (Sum and product of the degrees). Let G ⊂ GL(Cn) be a finite matrix
group whose invariant ring C[x1, . . . , xn]G is generated by n algebraically independent
homogeneous invariants θ1, . . . , θn where di = deg θi. Let r be the number of reflections
in G. Then

|G| = d1d2 . . . dn and r = d1 + d2 + · · ·+ dn − n.
Proof. By Lemma 1, we have

HG(t) =
1

1− td1
. . .

1

1− tdn
.

Multiplying HG(t) with (1− t)n and taking the Taylor expansion about t = 1 we find:

(1− t)nHG(t) =
1

d1d2 . . . dn
+
d1 + d2 + · · ·+ dn − n

2d1d2 . . . dn
(1− t) +O((1− t)2).
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Comparing with Lemma 5 completes the proof. �

Proof of Theorem 5 (only if-part). Suppose that C[x1, . . . , xn]G = C[θ1, . . . , θn] with
deg θi = di. Let H be the subgroup of generated by all reflections in G. Then by the
if-part of Theorem 5, we have

C[x1, . . . , xn]H = C[ψ1, . . . , ψn],

where deg(ψj) = ej . Clearly C[x1, . . . , xn]G ⊆ C[x1, . . . , xn]H , so each θi is a polynomial
function in the ψ’s.

Since the θ’s and the ψ’s are both algebraically independent, the Jacobian determi-
nant det( ∂θi∂ψj

)i,j is nonzero. Hence there exists a permutation π with

∂θπ(1)

∂ψ1

∂θπ(2)

∂ψ2
. . .

∂θπ(n)

∂ψn
6= 0.

This means that ψi actually appears in θπ(i) = θπ(i)(ψ1, . . . , ψn), and consequently
ei = degψi ≤ dπ(i) = deg θπ(i). Let r be the number of reflections in G and therefore
in H. By Corollary 5, we have

r =

n∑
i=1

(di − 1) =

n∑
i=1

(dπ(i) − 1) =

n∑
i=1

(ei − 1).

Since ei ≤ dπ(i), we have ei = dπ(i), so again by Corollary 5 we have |G| = d1d2 . . . dn =
e1e2 . . . en = |H|, and hence H = G. �

7. LECTURE 7 (More on invariants of reflection groups).

Proposition 5. Suppose G is a reflection group. Suppose also that f1, . . . , fn are ho-
mogeneous G-invariants, having respective degrees e1, . . . , en. If f1, . . . , fn are alge-
braically independent and

∏n
i=1 ei = |W | then they form a set of basic invariants, i.e.,

C[W ]G = C[f1, . . . , fn].

Proof. We may assume that e1 ≤ e2 ≤ · · · ≤ en. Let h1, . . . , hn be a set of basic invari-
ants, of degrees d1 ≤ d2 ≤ · · · ≤ dn. Since f1 is a polynomial in the hi’s, it is clear that
e1 ≥ d1. We claim that this inequality holds for each i. Otherwise, let k be the first in-
dex for which ek < dk. Then each of f1, . . . , fk−1 must be a polynomial in h1, . . . , hk−1.
But the field of rational functions generated by f1, . . . , fk has transcendence degree k
over C, so cannot be contained in a field of smaller transcendence degree. This proves
our claim.

Thanks to Corollary 5 and the hypothesis,
∏n
i=1 di = |G| =

∏n
i=1 ei forcing di = ei

for all i. In turn, we see that the dimension of the space of homogeneous invariants of
degree d generated by the fi’s agrees with that of the space generated by the hi’s, for
every d. Thus, the fi are a set of basic invariants for G. �

We are going to discuss now the classification of complex reflection groups. A
complex reflection group is a product of so-called irreducible reflection groups. So,
we will only discuss irreducible reflection groups in this lecture notes.
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Definition 10. A complex reflection group G ≤ GL(W ) is called reducible if the
vector space W is a reducible, G-module, i.e. it has notrivial G-submodules. If this is
not the case, then G is said to be an irreducible complex reflection group.

The irreducible complex reflection groups were classified by G. Shephard and J.
Todd in 1954. They proved that every irreducible reflection group either belongs to an
infinite family G(m, p, n) depending on 3 positive integer parameters (with p dividing
m) or is one of 34 exceptional cases, which they numbered from 4 to 37.

Let us first introduce the notion of monomial matrix: by monomial matrix we
mean n × n matrix such that in each row and column of the matrix there is exactly
one non-zero element. If the non-zero entries of a monomial matrix are equal to 1, then
the matrix is called a permutation matrix.

Definition 11. For any m, p, n ≥ 1 such that p|m define G(m, p, n) to be the group
of n × n monomial matrices with non-zero entries ai such that the ai are m-th roots
of unity and

∏n
i=1 ai is an m/p-th root of unity.

Theorem 6. If dimW = n ≥ 2 and if G ≤ GL(W ) is an irreducible complex reflec-
tion group then G is conjugate to G(m, p, n), i.e., there exists g ∈ GL(W ) such that
gGg−1 = G(m, p, n) for some m, p ∈ N and p|m.

Note that the group G(1, 1, n) is isomorphic to the symmetric group Sn. Moreover,
G(1, 1, n) acts on Cn by permuting coordinates.

Exercise 6. Let Dn(m) be the set of diagonal complex matrices with diagonal entries
in the group µm of all m-th roots of unity. Let p|m and d = m/p. The d-th power of
the determinant defines a surjective morphism

detd : Dn(m)→ µp.

Let A(m, p, n) be the kernel of the above morphism. In particular we have |A(m, p, n)| =
mn/p. Identifying the symmetric group Sn with the usual n× n permutation matrices,
please, show that

G(m, p, n) = A(m, p, n) o Sn.

Remark 7. One can show that the group G(m, p, n) is irreducible if and only if
(m, p, n) 6= (2, 2, 2) and m > 1. Note that G(2, 2, 2) is isomorphic to the so-called Klein
group of order 4 that is isomorphic to µ2 × µ2. If m = 1, then G(1, p, n) is a subgroup
of index p of the symmetric group Sn = G(1, 1, n).

Example 15. (i) Recall that SLn(C) = {A ∈ GLn(C) | detA = 1} . Define

Tn =


a11 a12 . . . a1n

. . .
an1 an2 . . . ann

 ∈ SLn(C) | aij = 0, i 6= j

 =

{diag(t1, . . . , tn) | t1 . . . tn = 1} ,
where diag(t1, . . . , tn) is the diagonal matrix with entries ti. One can show that Tn is
isomorphic to (C∗)n−1. Denote by N(Tn) the normalizer of Tn in SLn(C), i.e., N(Tn) =
{g ∈ SLn(C) | gTn = Tng}. One can prove that

N(Tn) = ∪A{ATn | A is a permutation matrix}.
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We define the Weyl group of SLn(C) to be the quotient N(Tn)/Tn which is isomorphic
to Sn. Moreover, the action of N(Tn)/Tn on Tn induces the action on the n-dimensional
vector space of all diagonal matrices {diag(t1, . . . , tn) | t1, . . . , tn ∈ C} which is the same
as the action of G(1, 1, n) on W = Cn.

(ii) Consider SO2n(C) = {A ∈ GL2n(C) | AtJ2nA = J2n, detA = 1}, where by At

we denote the transpose matrix of A and

Jk =


0 0 0 . . . 0 1
0 0 0 . . . 1 0

. . . . . . . . . 0
0 1 . . . 0 0
1 0 . . . 0 0


is the reversed identity matrix of size k × k. One can see that the group

T SO
2n =

{
diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ) | t1, . . . , tn ∈ C∗
}

is a subgroup of SO2n(C) isomorphic to (C∗)n. Analogously as above we define the
Weyl group of SO2n(C) to be the quotient N(T SO

2n )/T SO
2n , where N(T SO

2n ) is the nor-
malizer of T SO

2n in SO2n(C). The quotient group N(T SO
2n )/T SO

2n acts on T SO
2n and hence,

N(T SO
2n )/T SO

2n induces the action on the tangent space TET
SO
2n at the identity element

E of the group T SO
2n . Moreover, TE(T SO

2n ) is isomorphic to the vector space Cn and the
action of N(T SO

2n )/T SO
2n on TE(T SO

2n ) ' Cn is isomorphic to the action of G(2, 2, n) on
Cn.

(iii) Analogously as above, consider SO2n+1(C) = {A ∈ GL2n+1(C) | AtJ2n+1A =
J2n+1, detA = 1}. One can find out that the group

T SO
2n+1 =

{
diag(t1, . . . , tn, 1, t

−1
n , . . . , t−1

1 ) | t1, . . . , tn ∈ C∗
}
.

is the subgroup of SO2n+1(C) that is isomorphic to (C∗)n. We define the Weyl group
of SO2n+1(C) to be the quotient N(T SO

2n+1)/T SO
2n+1, where N(T SO

2n+1) is the normalizer

of T SO
2n+1 in SO2n+1(C). The quotient group N(T SO

2n+1)/T SO
2n+1 acts on T SO

2n+1 and hence,

N(T SO
2n+1)/T SO

2n+1 induces the action on the tangent space TE(N(T SO
2n+1)/T SO

2n+1) at the

identity element E of the group T SO
2n+1. Moreover, TE(T SO

2n+1) is isomorphic to the vector

space Cn and the action of N(T SO
2n+1)/T SO

2n+1 on TE(T SO
2n+1) ' Cn is isomorphic to the

action of G(2, 1, n) on Cn.

Matrix groups SLn(C), and SOn(C) play a very important role in the theory of
algebraic groups (we will introduce this notion later). The Weyl groups of these groups
play a very important role as well. Hence, groups G(1, 1, n), G(2, 1, n) and G(2, 2, n)
are of great interest. In the next lecture we will compute the invariant rings of groups
G(1, 1, n), G(2, 1, n), G(2, 2, n) and alternating group An ⊂ Sn = G(1, 1, n).

8. LECTURE 8 (Invariants of some Refelction Groups).

Consider first the symmetric group G = Sn. Define

hi = xi1 + · · ·+ xin (1 ≤ i ≤ n).
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The product of degrees of the hi is n! = |G|, so to show that C[x1, . . . , xn]G =
C[h1, . . . , hn], it just has to be checked (thanks to Proposition 5) that the hi’s are alge-
braically independent. We are going to do this using Jacobian criterion (see Proposition
4). For 1 ≤ i, j ≤ n,

∂hi
∂xj

= ixi−1
j .

Thus, jac(h1, . . . , hn) is n! times the n× n the so-called Vandermonde determinant

(11) D =

∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn

. . .
xn−1

1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣ .
Now D is well-known to equal ∏

1≤i,j≤n
(xj − xi).

Hence,

jac(h1, . . . , hn) = n!
∏

1≤i,j≤n
(xj − xi) 6= 0

For G of type Bn the reasoning is similar. Here G acts on x1, . . . , xn by permutations
and sign changes, leaving invariant

hi = x2i
1 + · · ·+ x2i

n (1 ≤ i ≤ n),

whose degrees have product 2nn! = |G|. A quick computation yields

jac(h1, . . . , hn) = 2nn!

∣∣∣∣∣∣∣∣
x1 x2 . . . xn
x3

1 x3
2 . . . x3

n

. . .
x2n−1

1 x2n−1
2 . . . x2n−1

n

∣∣∣∣∣∣∣∣
= 2nn!x1 . . . xn

∏
1≤i,j≤n

(x2
j − x2

i ) 6= 0.

The group G of type Dn acts on x1, . . . , xn by permutations and by changes of an
even number of signs, so we can easily find invariants by modifying the preceding choice
slightly:

hi =

n∑
j=1

x2i
j (1 ≤ i ≤ n− 1), hn = x1 . . . xn.

The product of the degrees is 2n−1n! = |G|. With somewhat more effort than before,
one finds

jac(h1, . . . , hn) =

∣∣∣∣∣∣∣∣∣∣
2x1 2x2 . . . 2xn
4x3

1 4x3
2 . . . 4x3

n

. . .
(2n− 2)x2n−3

1 (2n− 2)x2n−3
2 . . . (2n− 2)x2n−3

n

x̂1x2 . . . xn x1x̂2 . . . xn . . . x1x2 . . . x̂n

∣∣∣∣∣∣∣∣∣∣
,
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where x1 . . . x̂i . . . xn = x1 . . . xi−1xi+1 . . . xn. Hence, one can show that jac(h1, . . . , hn) =
(−2)n−1(n− 1)!

∏
1≤i,j≤n(x2

j − x2
i ) 6= 0.

Invariants of alternating group. Let An ⊂ Sn be the alternating group that acts
on W = Cn. We claim that

C[x1, . . . , xn]An = {f | f(xδ(1), . . . ) = f(x1, ...) for all δ ∈ An} =

C[σ1, . . . , σn, D],
(12)

where σ1, . . . , σn are symmetric polynomials (see Example 5 from lecture notes) and
δ =

∏
i<j(xi − xj) is the Vandermond determinant.

Let us first show that any f(x1, . . . , xn) ∈ C[x1, . . . , xn]An splits into a sum of
symmetric and so-called alternating polynomial, i.e., such polynomial f that

δ · f = −f

for any δ ∈ Sn of odd length. Indeed, define h(x1, x2, x3, . . . , xn) = f(x2, x1, x3, . . . , xn) =
(1, 2) · f(x1, x2, x3, . . . , xn). Then

f + h is symmetric and f − h is alternative.

The first assertion follows from the fact that

δ · (f + h) = δ · f + δ · h = δ · f + δ(1, 2) · f = δ · f + (1, 2)δ′ · f,

where δ′ ∈ Sn has the same sign as δ ∈ Sn (please, show this! Note that any transpo-
sition can be written as a product of any other transposition and some even permuta-
tion). The second one follows because for any δ of odd length

δ · (f − h) = δ · f − δ(1, 2) · f = δ · f − f

since δ(1, 2) has even length and moreover

δ · f − f = (1, 2)(1, 2)δ · f − f = (1, 2)f − f = h− f

as (1, 2)δ ∈ Sn has even length. Therefore,

f =
1

2
(f + h) +

1

2
(f − h)

is a sum of a symmetric polynomial and an alternating polynomial.
We now claim that D divides any alternating polynomial. Indeed, for alternating

polynomial f ,

f(x2, x1, x3, . . . , xn) = −f(x1, x2, x3, . . . , xn)

and so f(x1, x1, x3, . . . , xn) = 0. Therefore, f is divisible by x1 − x2. Likewise it is
divisible by all xi − xj and hence, since C[x1, x2, . . . , xn] is a unique factorization
domain, f is also divisible by

∏
i<j(xi−xj). Therefore, the ideal generated by invariants

of positive degree from C[x1, . . . , xn]An coincides with the ideal generated by symmetric
functions σ1, . . . , σn and D. Finally, by Remark 6 we get (12).

Remark 8. By Theorem 5 and (12) we have that An is not a reflection group.
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9. LECTURE 9 (More about Algebraic Geometry: Affine Varieties).

We have seen in Lecture 4 that every closed subset X ⊂ W = Cn is equipped with
an algebra of C-valued functions, namely the coordinate ring C[X]. We first remark
that C[X] determines the topology of X. In fact, define for every ideal a ⊂ C[X] the
zero set in X by

VX(a) := {x ∈ X | f(x) = 0 for all f ∈ a}.
Clearly, we have VX(a) = V(ã)∩X, where ã ⊂ C[W ] is an ideal which maps surjectively
onto a under the restriction map. This shows that the sets VX(a) are the closed sets
of the topology on X induced by the Zariski topology of W . Moreover, the coordinate
ring C[X] also determines the points of X since they are in one-to-one correspondence
with the maximal ideals of C[X]:

x ∈ X 7→ mx := ker evx ⊂ C[X],

where evx : C[X] → C is the evaluation map f 7→ f(x). This leads to the following
definition of an affine variety.

Definition 12. A set Z together with a C-algebra C[Z] of C-valued functions on Z is
called an affine variety if there is a closed subset X ⊂ Cn for some n and a bijection
ϕ : Z

∼−→ X which identifies C[X] with C[Z], i.e., ϕ∗ : C[X]
∼−→ C[Z] given by f 7→ f ◦ϕ,

is an isomorphism.
The functions from C[Z] are called regular, and the algebra C[Z] is called coordinate

ring of Z or algebra of regular functions on Z. The affine variety Z has a natural
topology, also called Zariski topology, the closed sets being the zero sets

VZ(a) = {z ∈ Z | f(z) = 0 for all f ∈ a},
where a runs through the ideals of C[Z]. It follows from what we said above that the

bijection ρ : Z
∼−→ X is a homeomorphism with respect to the Zariski topology.

Clearly, every closed subset X ⊂W = Cn together with its coordinate ring C[X] is
an affine variety. More generally, if X is an affine variety and Y ⊂ X a closed subset,
then Y together with the restrictions C[Y ] = {f |Y | f ∈ C[X]} is an affine variety,
called a closed subvariety.

Example 16. As in Example 5, let Sn denote the symmetric group on {1, . . . , n}
and consider the natural representation of Sn on V = Cn given by σ · ei = eσ(i), or,
equivalently

σ · (x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)).

We say that x = (x1, x2, . . . , xn) ∼ y = (y1, y2, . . . , yn) if and only if there exists some
σ ∈ Sn such that σ · (x1, x2, . . . , xn) = (y1, y2, . . . , yn). We claim that the orbit space
Cn/ ∼ is an affine variety.

We define C[Cn/ ∼] = C[Cn]Sn to be the symmetric polynomials in n variables and
claim that Cn/ ∼ is an affine variety. To see this consider the map

ϕ : (Cn/ ∼)→ Cn, x = (x1, . . . , xn) 7→ (σ1(x), σ2(x), . . . , σn(x)),

where σ1, . . . , σn are the elementary symmetric polynomials (see Example 5). It is easy
to see that ϕ is surjective and that ϕ(x) = ϕ(y) if and only if x ∼ y. Thus, ϕ defines
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a bijection φ : Cn/ ∼ ∼−→ Cn, and the pull-back of the regular functions on Cn are the

symmetric polynomials: φ∗ : C[x1, . . . , xn]
∼−→ C[σ1, . . . , σn].

We will need the following corollary from Nullstellensatz (see Theorem 3) in order
to prove the next proposition.

Corollary 6 (from Theorem 3). The map X 7→ I(X) defines a inclusion-reversing
bijection

{X ⊂W closed } ∼−→ {a ⊂ C[W ] perfect ideal}

whose inverse map is given by a 7→ V(a). Moreover, for any finitely generated reduced
C-algebra R there is a closed subset X ⊂ Cn for some n such that C[X] is isomorphic
to R.

Proof. The first part is clear since V(I(X)) = X and I(V(a)) =
√
a for any closed

subset X ⊂W and any ideal a ⊂ C[W ].
If R is a reduced and finitely generated C-algebra, R = C[f1, . . . , fn], then R '

C[x1, x2, . . . , xn]/a, where a is the kernel of the homomorphism defined by xi 7→ fi.
SinceR is reduced we have

√
a = a (see Exercise 3) and so C[V(a)] ' C[x1, x2, . . . , xn]/a '

R. �

We start with a reduced and finitely generated C-algebra R. Denote by SpecR the
set of maximal ideals of R:

SpecR = {m | m ⊂ R a maximal ideal}.

We know from Hilbert’s Nullstellensatz (see Exercise 4) that R/m = C for all maximal
ideals m ∈ SpecR. This allows to identify the elements from R with C-valued functions
on SpecR: for f ∈ R and m ∈ SpecR we define

f(m) = f + m ∈ R/m = C.

Proposition 6. Let R be a reduced and finitely generated C-algebra. Then the set of
maximal ideals SpecR together with the algebra R considered as functions on SpecR
is an affine variety.

Proof. We have already seen earlier that every such algebra R is isomorphic to the
coordinate ring of a closed subset X ⊂ Cn. The claim then follows by using the
bijection X

∼−→ SpecC[X], x 7→ mx = ker evx, and remarking that for f ∈ C[X] and
x ∈ X we have f(x) = evx(f) = f +mx, by definition. �

Exercise 7. Denote by Cn the n-tuples of complex numbers up to sign, i.e., Cn :=
Cn/ ∼ where (x1, . . . , xn) ∼ (y1, . . . , yn) if xi = ±yi for all i. Then every polynomial
in C[x2

1, x
2
2, . . . , x

2
n] is a well-defined function on Cn. Show that Cn together with these

functions is an affine variety. (Hint: Consider the map:

Cn → Cn, (a1, . . . , an) 7→ (a2
1, . . . , a

2
n)

and proceed like in Example 16.)
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Example 17. (1) We claim that On(C) = {A ∈ GLn(C) | AAt = AtA = E} is a
closed subset of Mn(C) which would show that On(C) is an affine variety. Indeed, it is
not difficult to see that

On(C) =


a11 a12 . . . a1n

. . .
an1 an2 . . . ann

 ∈ Mn(C) |
n∑
ν=1

aiνajν − δij = 0 | 1 ≤ i ≤ j ≤ n)


which shows the claim.

(1)′ Let us show that SOn(C) = {A ∈ On(C) | detA = 1} is an affine variety. As we
have shown in (1), On(C) ⊂ Mn(C) is closed. Moreover, by Example 9(1) we know that
SLn(C) ⊂ Mn(C) is closed too. It is easy to see that SOn(C) = On(C)∩ SLn(C). Since
intersection of two closed subsets On(C) ⊂ Mn(C) and SLn(C) ⊂ Mn(C) is closed in
Mn(C) we conclude that SOn(C) ⊂ Mn(C) is closed in Zariski topology.

(2) Let us show that GLn(C) is an affine variety. Consider first the subset S of
n2 + 1-dimensional vector space

C×Mn(C) = {(t, A) | t ∈ C, A ∈ Mn(C)}

defined in the following way:

S = {(t, A) ∈ C×Mn(C) | t · detA = 1}.

Now, consider the map π : GLn(C)→ S that sends a matrix A ∈ GLn(C) to ( 1
detA , A).

It is clear that π is bijective and we conclude that GLn(C) is an affine variety. In
particular, C∗ = GL1(C) is an affine variety.

Exercise 8. Show that

Sp2n(C) = {A ∈ M2n(C) | AtΩA = Ω}

is an affine variety (is closed in M2n(C)), where

Ω =

(
0 En
−En 0

)
.

10. LECTURE 10, (Decomposition into Irreducible Components).

We start with a purely topological notion.

Definition 13. A topological space T is called irreducible if it cannot be decomposed
in the form T = A∪B, where A,B ( T are proper closed subsets. Equivalently, every
non-empty open subset is dense.

Note that an irreducible algebraic variety is always connected but the converse is
not true.

Example 18. Take X = {(x, y) ∈ C2 | xy = 0}. Here the open sets, Y1 = {(x, 0) ∈ X |
x 6= 0} and Y2 = {(0, y) ∈ X | y 6= 0} do not intersect each other. And X = {(x, 0)} ∪
{(0, y)}, where both the sets {(x, 0)} and {(0, y)} are connected (being homeomorphic
to C) and they intersect each other, hence the union is connected.
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10.1. Product of irreducible varieties.

Proposition 7. The product X × Y of two affine varieties together with the algebra

C[X × Y ] = C[f · h | f ∈ C[X], h ∈ C[Y ]]

of C-valued functions is an affine variety. Moreover, the canonical homomorphism

C[X]⊗ C[Y ]→ C[X × Y ], f ⊗ h 7→ f · h,
is an isomorphism.

Proof. Let X ⊂ Cn and Y ⊂ Cm be closed subvarieties. Then X × Y ⊂ Cn+m

is closed, namely equal to the zero set V(I(X) ∪ I(Y )). So it remains to show that
C[X × Y ] = C[x1, . . . , xn, y1, . . . , ym]/I(X × Y ) is generated by the products f · h
and that f · h ∈ C[X × Y ] for f ∈ C[X] and h ∈ C[Y ]. But this is clear since
x̄i = xi|X×Y = xi|X · 1 and ȳj = yj |X×Y = 1 · yj |Y , and f |X · h|Y = (fh)|X×Y for
f ∈ C[x1, . . . , xn] and h ∈ C[y1, . . . , ym].

For the last claim, we only have to show that the map C[X]⊗C[Y ]→ C[X×Y ], f⊗
h 7→ f · h, is injective. For this, let {fi | i ∈ I} be a basis of C[Y ]. Then every element
s ∈ C[X] ⊗ C[Y ] can be uniquely written as a finite sum

∑
finite si(x)fi(y). If s is in

the kernel of the map, then
∑
si(x)fi(y) = 0 for all (x, y) ∈ X × Y and so, for every

fixed x ∈ X,
∑
si(x)fi is the zero function on Y . This implies that si(x) = 0 for all

x ∈ X and so si = 0 for all i. Thus, s = 0 proving the claim.

Proposition 8. A product X × Y of irreducible varieties is irreducible.

Proof. Suppose that Z1, Z2 ⊂ X×Y are subvarieties with Z1∪Z2 = X×Y . We assume
that Z2 6= X × Y and use this to show that Z1 = X × Y . For each x ∈ X, identify the
subvariety {x} × Y with Y . This irreducible variety is the union of two subvarieties,

{x} × Y = (({x} × Y ) ∩ Z1) ∪ (({x} × Y ) ∩ Z2),

and so one of these must equal {x}×Y . In particular, we must either have {x}×Y ⊂ Z1

or else {x} × Y ⊂ Z2. If we define

X1 = {x ∈ X | {x} × Y ⊂ Z1}, and

X2 = {x ∈ X | {x} × Y ⊂ Z2},
then we have just shown that X = X1 ∪X2. Since Z2 6= X × Y , we have X2 6= X. We
claim that both X1 and X2 are subvarieties of X. Then the irreducibility of X implies
that X = X1 and thus X × Y = Z1. We will show that X1 is a subvariety of X. For
y ∈ Y , set

Xy = {x ∈ X | (x, y) ∈ Z1}.
Since Xy × {y} = (X × {y}) ∩ Z1, we see that Xy is a subvariety of X. But we have

X1 =
⋂
y∈Y

Xy,

which shows that X1 is a subvariety of X. An identical argument for X2 completes the
proof. �

Corollary 7. If X = ∪iXi and Y = ∪jYj are the irreducible decompositions of X and
Y , then X × Y = ∪i,jXi × Yj is the irreducible decomposition of the product.
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10.2. Irreducible decomposition.

Proposition 9. An affine variety X is irreducible if and only if its ideal I(X) is prime.

Proof. Let X be an affine variety and set a = I(X). First suppose that X is irreducible.
Let f, g 6∈ a. Then neither f nor g vanishes identically on X. Thus Y = X ∩ V(f) and
Z = X ∩V(z) are proper subvarieties of X. Since X is irreducible, Y ∪Z = X ∩V(fg)
is also a proper subvariety of X, and thus fg 6∈ a.

Suppose now that X is reducible. Then X = Y ∪Z is the union of proper subvarieties
Y,Z of X. Since Y ( X is a subvariety, we have I(X) ( I(Y ). Let f ∈ I(Y ) \ I(X),
a polynomial which vanishes on Y but not on X. Similarly, let g ∈ I(Z) \ I(X) be a
polynomial which vanishes on Z but not on X. Since X = Y ∪ Z, fg vanishes on X
and therfore lies in a = I(X). This shows that a is not prime. �

A general variety is a finite union of “components” where a component means a
maximal irreducible subset.

Theorem 7. Any affine variety is a finite union of irreducible subvarieties.

Proof. An affine variety X either is irreducible or else we have X = Y ∪ Z, with both
Y and Z proper subvarieties of X. We may similarly decompose whichever of Y and Z
are reducible, and continue this process, stopping only when all subvarieties obtained
are irreducible. A priori, this process could continue indefinitely. We argue that it must
stop after a finite number of steps.

If this process never stops, then X must contain an infinite chain of subvarieties,
each one properly contained in the previous one,

X ) X1 ) X2 ) . . . .

Their ideals form an infinite increasing chain of ideals in C[x1, . . . , xn], The union I of
these ideals is again an ideal. Note that no ideal I(Xm) is equal to I. By the Hilbert
Basis Theorem, I is finitely generated, and thus there is some integer m for which
I(Xm) contains these generators. But then I = I(Xm), a contradiction. �

Remark 9. Note that it is not difficult to prove that an affine variety X has a unique
irreducible decomposition as a finite union of irreducible subvarieties

X = X1 ∪ · · · ∪Xm.

We call these distinguished subvarieties Xi the irreducible components of X.

Example 19. The group O2 = {A ∈ M2(C) | AAt = AtA = E}, where E is the
identity matrix has two irreducible components, namely SO2(C) := O2(C) ∩ SL2(C)

and

(
0 1
1 0

)
· SO2(C), and the two components are disjoint.

In fact, the condition AAt = E for A =

(
a b
c d

)
implies that

(
a
b

)
= ±

(
d
−c

)
.

Since det

(
a b
−b a

)
= a2 + b2 we see that SO2(C) =

{(
a b
−b a

)
| a2 + b2 = 1

}
is

irreducible as well as

(
0 1
1 0

)
· SO2(C) =

{(
a b
b −a

)
| a2 + b2 = 1

}
and the claim

follows.
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11. LECTURE 11, Morphisms and Constructible Sets.

11.1. Morphisms, images, preimages and fibers.

Definition 14. Let X,Y be affine varieties. A map ϕ : X → Y is called regular
morphism if the pull-back of a regular function on Y is regular on X:

f ◦ ϕ ∈ C[X] for all f ∈ C[Y ].

Thus, we obtain a homomorphism ϕ∗ : C[Y ]→ C[X] of C-algebras given by ϕ∗(f) =
f ◦ ϕ, which is called comorphism of ϕ. A morphism ϕ is called an isomorphism
if ϕ is bijective and the inverse map ϕ−1 is also a morphism. If, in addition, Y = X,
then ϕ is called an automorphism.

Definition 15. A morphism ϕ : X → Y is called a closed immersion if ϕ(X) ⊂ Y
is closed and the induced map X → ϕ(X) is an isomorphism.

Proposition 10. A morphism ϕ : X → Y is a closed immersion if and only if the
comorphism ϕ∗ : C[Y ]→ C[X] is surjective.

Proof. If ϕ is a closed immersion, then C[X] ' C[ϕ(X)] and the regular functions on
ϕ(X) are restrictions from regular functions on Y , hence ϕ∗ is surjective.

Now assume that ϕ∗ is surjective, and put a = kerϕ∗. This is a radical ideal and so
a = I(Z) where Z = VX(a). By definition, ϕ∗ has the decomposition C[Y ] � C[Z]

∼−→
C[X], i.e. ϕ induces an isomorphism X

∼−→ Z ⊂ Y . �

Exercise 9. Let ϕ : X → Y and ψ : Y → Z be morphisms, and assume that the
composition ψ ◦ ϕ is a closed immersion. Then ϕ is a closed immersion.

11.2. Dimension. Let A be a finitely generated C-algebra. A set a1, a2, . . . , an ∈ A of
elements from A are called algebraically independent over C if they do not satisfy
a non-trivial polynomial equation F (a1, a2, . . . , an) = 0, where F ∈ C[x1, . . . , xn].
Equivalently, the canonical homomorphism of C-algebras C[x1, . . . , xn] → A defined
by xi 7→ ai is injective. In order to define the dimension of a variety we will need
the concept of transcendence degree tdegCK of a field extension K/C. It is defined
to be the maximal number of algebraically independent elements in K. Such a set is
called a transcendence basis, and all such bases have the same number of elements.

Definition 16. Let X be an irreducible affine variety and C(X) its field of rational
functions. Then the dimension of X is defined by

dimX = tdegCC(X).

If X is reducible and X = ∪iXi the irreducible decomposition, then

dimX = max
i

dimXi.

Lemma 6. Let X,Y be irreducible varieties of dimensions m,n respectively, then
dimX × Y = m+ n.

Proof. It suffices to consider the case where X and Y are irreducible, see Corollary 7.
Then C[X]⊗C[Y ] is a domain as well as C(X)⊗C(Y ). Now C(X) is finite over a subfield
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C(x1, . . . , xn) where n = dimX, and C(Y ) is finite over a subfield C(y1, . . . , ym),
where m = dimY . Hence, C(X) ⊗ C(Y ) is finitely generated over C(x1, . . . , xn) ⊗
C(y1, . . . , ym). Since C(X × Y ) is the field of fractions of C(X)⊗C(Y ), it follows that
it is finite over C(x1, . . . , xn, y1, . . . , ym) which is the field of fractions of C(x1, . . . , xn)⊗
C(y1, . . . . , ym). This completes the proof. �

Proposition 11. Let X be an irreducible variety and let Y be a proper subvariety of
X. Then dimY < dimX.

Proof. We can assume that Y is irreducible. If h1, . . . , hm ∈ C[Y ] are algebraically

independent where m = dimY , and hi = h̃i|Y for h̃1, . . . , h̃m ∈ C[X], then h̃1, . . . , h̃m
are algebraically independent, too, and so dimX ≥ dimY . If dimY = dimX, then
every f ∈ C[X] is algebraic over C(h̃1, . . . , h̃m). Choose f ∈ C[X] in the kernel of the
restriction map, i.e. f |Y = 0. Then f satisfies an equation of the form

fk + p1f
k−1 + · · ·+ pk−1f + pk = 0,

where pj ∈ C(h̃1, . . . , h̃m) and k is minimal. Multiplying this equation with a suitable

q ∈ C[h̃1, . . . , h̃m] we can assume that pj ∈ C[h̃1, . . . , h̃m]. But this implies that pk|Y =

0. Thus, since functions h̃1, . . . , h̃m are algebraically independent and their restrictions
to Y are algebraically independent, we conclude that pk = 0 and we end up with a
contradiction that k is minimal. �

11.3. Constructable sets. Let ϕ : X → Y be the morphism. We ask the question if
the image of open (closed) subset of X is open (closed) in Y ? The answer turns to be
”NO”.

Example 20 (the image is not open nor closed). Let ϕ : C2 → C2, (x, y) 7→ (x, xy) be
the morphism. The image of this morphism is C2 \{(0, c) | c 6= 0}, which is not open in
C2 but does have C2 as its closure. Moreover, C2 \ {(0, c) | c 6= 0} is also not closed in
C2. Further, the image of C2 is not locally closed set, i.e., it is not the intersection
of a closed and an open subsets.

However, we will see that the image is always a so-called constructible set.

Definition 17. A subset S of an affine variety X is called constructible if it is a
finite union of locally closed subsets.

Exercise 10. (1) Finite unions, finite intersections and complements of constructible
sets are again constructible.

(2) If a subset S of an affine variety X is constructible, then S contains a set U
which is open and dense in S̄.

We present the next important result without proof.

Theorem 8 (Chevalley’s Theorem). If ϕ : X → Y is a morphism of affine varieties,
then the image of a constructible subset is constructible.

In the next lecture we will start to study algebraic groups.
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12. LECTURE 12, Algebraic Groups.

12.1. Algebraic Groups.

Definition 18. An affine algebraic group is an affine variety G equipped with the
structure of a group, such that the multiplication map

µ : G×G→ G, (g, h) 7→ gh−1

is a morphism of varieties.

In this notes instead of using the slogan ”affine algebraic group” we will simply use
”algebraic group”.

Remark 10. Let G be an algebraic group. Consider the morphism

ϕh : G→ G, g 7→ hg.

The morphism ϕh is an isomorphism as ϕh−1 is the inverse morphism to ϕh. Hence,
ϕh maps open and closed subsets of G to open respectively closed subsets of G.

It is clear from the definition that a closed subgroup of an algebraic group is an
algebraic group. Moreover, we have the following lemma.

Lemma 7. Let U and V be dense open subsets of G. Then G = U · V .

Proof. Let x ∈ G. Then x · V −1 and U are dense open subsets of G. So they have to
meet, forcing x ∈ U · V . �

Lemma 8. Let H < G be a subgroup of an algebraic group G. Then
(i) if H is constructible, then H coincides with its closure H̄.
(ii) if H contains a dense open subset of its closure H̄, then H = H̄.
(iii) if H is locally closed, then it is closed.

Proof. (i), (ii): if H is constructible, it contains a dense open subset U of H̄, see
Exercise 10(2). Then H is also open in H̄, as H is a union ∪h∈Hh ·U of open sets h ·U .
By Lemma 7, H̄ = H ·H = H.

(iii) follows from (ii). �

Remark 11. The assertion (iii) of the lemma above is not true in the case of topo-
logical groups. For those who are familiar with topological groups, take the following
example: a line with irrational slope in R2, gives an embedding of R into R2/Z2 as an
everywhere dense subgroup of the torus R2/Z2.

Example 21. (1) Any finite group is an algebraic group. Indeed, it is easy to see that
a finite set is an affine variety with discrete topology.

(2) As we have seen in Example 9, SLn(C) is an affine variety. Moreover, one can
show that the map

SLn(C)× SLn(C)→ SLn(C), (g, h) 7→ gh−1

is a morphism of affine varieties. Hence, SLn(C) is an algebraic group.
(3) By Example 17 we have that On(C) and SOn(C) are affine varieties. Analogously

as in the case of SLn(C) we can show that On(C) and SOn(C) are algebraic groups.
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(4) The group of upper triangular unipotent matrices

Un =




1 ∗ . . . ∗
0 1 . . . ∗

. . .
0 0 . . . 1




with 1’s along the diagonal and any elements over the diagonal is an algebraic group.
(5)The group of diagonal matrices

Tn =



∗ 0 . . . 0
0 ∗ . . . 0

. . .
0 0 . . . ∗




with nonzero elements along the diagonal is an algebraic group. Its coordinate ring is
isomorphic to C[t1, t

−1
1 , . . . , tn, t

−1
n ].

Lemma 9. Let ϕ : X → Y be a morphism. If X is irreducible, then the closure ϕ(X)
of ϕ(X) ⊂ Y is irreducible.

Proof. Let Z = ϕ(X). Suppose that Z = Z1 ∪ Z2, where Z1 and Z2 are closed subsets
in Y . Then X = ϕ−1(Z) = ϕ−1(Z1) ∪ ϕ−1(Z2). Since ϕ is a morphism, ϕ−1(Z1) and
ϕ−1(Z2) are closed subsets of X. Therefore, by the irreducibility of X, either X =
ϕ−1(Z1) or X = ϕ−1(Z2). Without loss of generality, assume that X = ϕ−1(Z1). Then

ϕ(X) ⊂ Z1, so ϕ(X) ⊂ Z1 = Z1, and ϕ(X) = Z1. Therefore, ϕ(X) is irreducible. �

Proposition 12. Connected algebraic group is irreducible.

Proof. One needs to prove that there is a unique irreducible component of G passing
through {e}, the identity of the group G. Let X1, . . . , Xm be all irreducible compo-
nents of G passing through {e}. Look at the mapping φ : X1 × . . . Xm → G, given by
multiplication. Since Xi’s are irreducible, so is their product and also the closure of
the image of the product in G under the map φ (see Lemma 9). Clearly the closure of
the image contains the identity and therefore the closure of the image of the map φ is
contained in an irreducible component of G, say X1. Since all Xi contain identity, this
implies that all Xi are contained in a fixed X1. �

Proposition 13. The irreducible component of G passing through {e} is a closed
normal subgroup of G of finite index.

Proof. We denote the irreducible component of G passing through {e} by G◦. Obvi-
ously, G◦ is closed in G. To prove that G◦ is a subgroup of G, we must show that
whenever x, y ∈ G◦, xy−1 ∈ G◦. Clearly x−1G◦ is also maximal irreducible subset
(follows from Remark 10) and e ∈ x−1G◦ ∩ G◦, thus x−1G◦ = G◦, i.e., x−1y ∈ G◦

∀x, y ∈ G◦. Similarly one can prove that G◦ is normal. An algebraic variety has finitely
many irreducible components (see Theorem 7), hence G◦ is of finite index in G. This
completes the proof. �

Remark 12. For an algebraic group G, any closed subgroup of finite index contains
G◦. Indeed, let H be a subgroup of G of finite index. Then H◦ is closed subgroup of H
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of finite index which in turn is a closed subgroup of G of finite index too. Hence H◦ is
a closed subgroup of G of finite index. Moreover, since H◦ is connected, H◦ ⊂ G◦ is a
closed subgroup of finite index. If H◦ ⊂ G◦ is a proper subset, then dimH◦ < dimG◦

(see Proposition 11) which means that the index of H◦ in G◦ is infinite. Therefore,
H◦ = G◦ which proves the claim.

12.2. Some Generalities about Closures in the Zariski Topology. Given A ⊂
X, where X is an algebraic variety, one can define A to be the smallest closed algebraic
subvariety of X containing A, i.e.,

A = {Y | A ⊂ Y, Y is closed in X}.
In particular, if G an algebraic group and H is an abstract subgroup of G, one can
talk about H which is a closed subvariety of G.

Lemma 10. If H is an abstract subgroup of G, then H is a closed algebraic subgroup
of G.

Proof. We need to prove that H ·H ⊂ H and H
−1 ⊂ H. Clearly, H ⊂ h−1 ·H for any

h ∈ H and h−1 ·H is closed in G. Hence, H ⊂ h−1H

⇒ h ·H ⊂ H ∀h ∈ H
⇒ H ·H ⊂ H
⇒ H · h ⊂ H ∀h ∈ H

⇒ H · h = H · h ⊂ H ∀h ∈ H
⇒ H ·H ⊂ H.

Similarly by noting that the map x 7→ x−1 is a homeomorphism of G, one can prove
that H is closed under inversion. Thus, H is a closed subgroup of the algebraic group
G �

This group H is called the algebraic hull of H.

Proposition 14. If G ⊂ GLn(C) is a subgroup such that for some d ≥ 1, gd = E ∀g ∈
G, then G is finite.

Proof. If G is not finite, look at G, an algebraic subgroup of GLn(C), for which xd = E

continues to hold. There exists a subgroup of G of finite index, G
◦
, such that G

◦
is

connected. A connected algebraic subgroup G
◦
, is of positive dimension, and then xd

can not be identically E (one can easily conclude it from Remark 13). Contradiction.
�

Remark 13. One can show that any affine algebraic group contains a copy of C∗ or
C+.

Exercise 11. Let G be a connected algebraic group. Prove that any finite normal
subgroup H lies in the center of G.

Exercise 12. Let ϕ : G → H be a morphism of algebraic groups which is an isomor-
phism of abstract groups. Then ϕ is an isomorphism of algebraic groups.
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13. LECTURE 13, Actions of Algebraic Groups.

Definition 19. A G-variety is an affine variety X equipped with an action of the
algebraic group G,

α : G×X → X, (g, x) 7→ g · x
which is also a morphism of varieties. We then say that α is an algebraic G-action. Any
algebraic action α : G×X → X yields an action of G on the coordinate ring C[X], via

(g · f)(x) = f(g−1 · x)

for all g ∈ G, f ∈ C[X] and x ∈ X. This action is clearly linear.

Lemma 11. With the preceding notation, the complex vector space C[X] is a sum of
finite dimensional G-stable subspaces on which G acts algebraically.

Proof. The action morphism α : G × X → X yields an algebra homomorphism (see
Definition 14)

α̃ : C[X]→ C[G×X], f 7→ ((g, x) 7→ f(g · x)).

Since C[G×X] = C[G]⊗ C[X] (see Proposition 7), we may write

f(g · x) =

n∑
i=1

ϕi(g)ψi(x),

where ϕ1, . . . , ϕn ∈ C[G] and ψ1, . . . , ψn ∈ C[X]. Then

g · f =

n∑
i=1

ϕi(g
−1)ψi

and hence the translates {g · f | g ∈ G} span a finite-dimensional subspace V ⊂∑n
i=1 Cψi ⊂ C[X]. Clearly, V isG-stable. Moreover, we have h·(g·f) =

∑n
i=1 ϕi(g

−1h−1)ψi
for any g, h ∈ G, and the functions h 7→ ϕi(g

−1h−1) are all regular. Thus, the G-action
on V is algebraic �

This result motivates the following.

Definition 20. A rational G-module is a complex vector space W (possibly of
infinite dimension) equipped with a linear action of G, such that every v ∈ W is
contained in a finite-dimensional G-stable subspace on which G acts algebraically,
i.e.,

G×W →W, (g, w) 7→ g · w
is a morphism of affine varieties.

Examples of rational G-modules include coordinate rings of G-varieties, by Lemma
11. Also, note that the finite-dimensional G-modules are in one-to-one correspondence
with the homomorphisms of algebraic groups f : G → GLn(C) for some n, i.e., with
the finite-dimensional algebraic representations of G.

Some linear actions of an algebraic group G do not yield rational G-modules; for
example, the G-action on C[G] via left multiplication, if G is irreducible and non-
trivial. However, we shall only encounter rational G-modules in these notes, and just
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call them G-modules for simplicity. Likewise, the actions of algebraic groups under
consideration will be assumed to be algebraic as well.

Example 22. Let G = C∗; then

C[G] = C[t, t−1] =

∞∑
n=−∞

Ctn.

Given a C∗-variety X, any f ∈ C[X] satisfies

(t · f)(x) = f(t−1 · x) =
∞∑

n=−∞
tnfn(x),

where the fn ∈ C[X] are uniquely determined by f . In particular, f =
∑∞

n=−∞ fn.
Since tt′ · f = t · (t′ · f) for all t, t′ ∈ C∗, we obtain

t · fn(x) = tnfn(x)

for all t ∈ C∗ and x ∈ X. This yields a decomposition

C[X] = ⊕∞n=−∞C[X]n,

where each t ∈ C∗ acts on C[X]n via multiplication by tn. It follows that the product
in C[X] satisfies

C[X]mC[X]n ⊂ C[X]m+n

for all m,n.

Definition 21. Given two G-varieties X,Y , a morphism of varieties f : X → Y is
called equivariant if it satisfies f(g · x) = g · f(x) for all g ∈ G and x ∈ X. We then
say that f is a G-morphism.

Proposition 15. Let G be an affine algebraic group and X an affine G-variety. Then X
is equivariantly isomorphic to a closed G-subvariety of a finite-dimensional G-module.

Proof. We may choose finitely many generators f1, . . . , fn of the algebra C[X]. By
Lemma 11, the translates {g · fi | g ∈ G}, where i = 1, . . . , n, are all contained in a
finite-dimensional G-submodule V ⊂ C[X]. Then V also generates the algebra C[X],
and hence the associated evaluation map

ι : X → V ∗, x 7→ (v 7→ v(x))

is injective. To show that it is a closed immersion we note that C[X] ⊂ C[V ∗] because
V generates C[X]. Now it follows from Proposotion 10 that ι is the closed immersion;
ι is equivariant by construction. �

Here are some fundamental properties of G-orbits and their closures.

Proposition 16. With the preceding notation, the orbit G · x is a locally closed sub-
variety of X, Moreover, the closure G · x is the union of G · x and of orbits of strictly
smaller dimension. Any orbit of minimal dimension in G · x is closed; in particular,
the closure G · x of G · x contains a closed orbit.
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Proof. Consider the orbit map

αx : G→ X, g 7→ g · x.

Clearly, αx is a morphism. Thus, G·x is a constructible subset of X, and hence contains
a dense open subset U ⊂ G · x of G · x (see Exercise 10(2)). Since G acts transitively
on G ·x, we have that G ·x = ∪g∈Gg ·U is open in G · x. The first part of the statement
follows.

Since G · x is open in G · x we have that G · x \G · x has dimension strictly smaller
than G · x and since G · x is a G-subvariety of X, G · x \G ·x is a union of orbits of G.

Now we will show that any orbit O of minimal dimension in G · x is closed. Indeed,
if O is not closed, then the closure O ⊂ G · x contains an orbit of dimension smaller
than dimO. Contradiction. �

Corollary 8. (i) Let ϕ : G → H be a homomorphism of algebraic groups. Then the
image of ϕ is a closed subgroup.

(ii) Any affine algebraic group is linear.

Proof. (i) The image of ϕ is constructible. Hence, the statement follows from Lemma
8(i).

(ii) Let G be an affine algebraic group, acting on itself by left multiplication. For
the corresponding action on the algebra C[G], we may find a finite dimensional G-
submodule V which generates that algebra. The induced homomorphism G→ GL(V )
is injective, and thus a closed immersion by (i). �

Remark 14. One could show that a connected linear algebraic group G of dimension
one is commutative and it is isomorphic either to C+ or C∗.

14. LECTURE 14, Reductive Groups and Hilbert’s Theorem.

Definition 22. An element g of an algebraic group G is called unipotent if the closure
of the group generated by g is isomorphic to the additive group C+. An algebraic group
G is called unipotent if each element of G is unipotent.

Example 23. Consider the group of upper triangular matrices

Un =




1 ∗ . . . ∗
0 1 . . . ∗

. . .
0 0 . . . 1




with 1’s along the diagonal and any elements over the diagonal. One can check that
each element of this group is unipotent (for U2 this is trivial, please check it for U3 and
Un for higher n). Hence, Un is a unipotent group.

Definition 23. A linear algebraic group G is reductive if it does not contain any
closed normal unipotent subgroup.
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Example 24. (i) finite groups are reductive. This is clear because any unipotent group
is infinite and hence can not be a subgroup of a finite group.

(ii) Algebraic torus (C∗)n is a reductive group. Indeed, (C∗)n does not contain non-
trivial unipotent subgroup and hence, is reductive. To see this we will prove that (C∗)n
does not contain a copy of C+. Indeed, if C+ is a subgroup of (C∗)n, then there is a
surjective homomorphism

C[(C∗)n]→ C[C+],

or, equivalently, we can write this surjective homomorphism as the following

ψ : C[t1, t
−1
1 , . . . , tn, t

−1
n ]→ C[x].

Since, C[t1, t
−1
1 , . . . , tn, t

−1
n ] is generated by invertible functions and C[x] does not con-

tain an invertible function, it follows that ψ is trivial and hence, (C∗)n does not contain
a copy of C+.

(iii) The group GLn(C) is reductive. Indeed, it is not difficult to see that GLn(C)
is a semidirect product of SLn(C) which is normal in GLn(C) and a subgroup

H =



c 0 0 . . . 0
0 c 0 . . . ∗

. . .
0 0 . . . c

 | c ∈ C∗

 = {cEn | c ∈ C∗} ' C∗,

where En is the identity matrix. In (ii) we proved that any homomorphism

ψ : C[t, t−1]→ C[x]

is trivial, hence, any morphism from affine line C to punctured affine line C∗ is a
constant. Therefore, a normal unipotent subgroup U of GLn(C) = SLn(C)oH should
be a subgroup of SLn(C) (since otherwise we cook up the morphism

U ⊂ GLn(C)→ H,

where the map GLn(C) → H is a projection onto H, which is nontrivial). As SLn(C)
is a simple algebraic group, i.e., does not contain a closed non-trivial proper normal
subgroup, we conclude that U has to be trivial and hence GLn(C) is reductive.

Remark 15. One can show that an algebraic group G is reductive if and only if G is
linearly reductive, i.e., if every representation of G is completely reducible, i.e., if
every representation of G is a direct sum of irreducible representations.

Theorem 9. Let G be a reductive algebraic group, and X an affine G-variety. Then:
(i) The subalgebra C[X]G ⊂ C[X] (consisting of regular G-invariant functions) is

finitely generated.
(ii) Let f1, . . . , fn be generators of the algebra C[X]G. Then the image of the mor-

phism

X → Cn, x 7→ (f1(x), . . . , fn(x))

is closed and independent of the choice of f1, . . . , fn. We denote the image of this
morphism by X//G.

(iii) Denote by π = πX : X → X//G the surjective morphism defined by (ii). Then
every G-invariant morphism f : X → Y (i.e., morphism of affine varieties such that
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f(g · x) = f(x) for all x ∈ X, g ∈ G), where Y is an affine variety, factors through a
unique morphism ϕ : X//G→ Y .

Proof. (i) The main ingredient is the Reynolds operator for reductive groups,
defined as follows. For any G-module W , the invariant subspace WG admits a unique
G-stable complement WG (see Remark 15). The Reynolds operator

RW : W →WG

is the projection associated with the decomposition W = WG ⊕WG. If f : W → V is
a morphism of G-modules, and fG : WG → V G denotes the induced linear map, then
clearly RV ◦ f = fG ◦RW . In particular, if f is surjective, then so is fG.

When W = C[X], we set

RX := RC[X] : C[X]→ C[X]G.

Then RX is C[X]G-linear, i.e., we have for any a ∈ C[X]G and b ∈ C[X],

RX(ab) = aRX(b),

as follows by considering the morphism of G-modules C[X]→ C[X], b 7→ ab.
Consider an ideal IG of C[X]G generated by all invariants of positive degree. We

claim that IG is finitely generated. Indeed, consider the associated ideal J = IGC[X]
of C[X]. Then J is G-stable, and JG = RX(J) = IGRX(C[X]) = IG. Since C[X] is
Noetherian, this implies our claim.

We first prove assertion (i) in the case when X is a finite-dimensional G-module, say
W . This follows (word by word) by the same trick as we did in the proof of (if-part)
of Theorem 5.

In the general case, we may equivariantly embed X into a G-moduleW (see Propo-
sition 15); then the surjective G-homomorphism C[W ] → C[X] induces a surjective
homomorphism C[W ]G → C[X]G. Thus, C[X]G is finitely generated; this completes
the proof of (i).

(ii) Denote by ϕ the morphism

X → Cn, x 7→ (f1(x), . . . , fn(x))

defined in the theorem. The Zariski closure of the image of ϕ which we denote by Y is
the set of all points (a1, . . . , an) ∈ Cn satisfying:

F (f1, . . . , an) = 0 for all polynomial relations F (f1, . . . , fn) = 0

among the generators f1 . . . , fn ∈ C[X]G.
(13)

In the other words, Y is the zero set of the kernel I ⊂ C[a1, . . . , an] of the homomor-
phism

C[a1, . . . , an]→ C[X]G, ai 7→ fi for i = 1, . . . , n.

A priory, ϕ maps X to Y , and we would like to know that it is surjective on this set.
Starting with the point a = (a1, . . . , an) ∈ Y that is satisfying (13) we consider the

homomoprhism of C[X]-modules

p : C[X]⊕ · · · ⊕ C[X]→ C[X] (b1, . . . , bn) 7→
n∑
i=1

bi(fi − ai).
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Since each fi−ai is G-invariant, we see that p is a homomorphism of G-representations.
Also, we observe that the induced map pG of G-invariants is not surjective: its image is
the maximal ideal ma ⊂ C[X]G corresponding to the point a ∈ Y . Since G is reductive,
this implies that p itself can not be surjective. Its image is therefore contained in some
maximal ideal m ⊂ C[X]. Then the intersection m∩C[X]G is a maximal ideal in C[X]G,
and therefore, it coincides with the maximal ideal ma. This shows that a ∈ Y is the
image of the point x ∈ X corresponding to m.

The closed subvariety Y = ϕ(X) ⊂ Cn depends on the choice of generating invariants

f1, . . . , fn. In other words, Y = SpecC[a1, . . . , an]/
√
I. However, the ideal I is radical

(that is,
√
I = I, since C[X]G ⊂ C[X] contains no nilpotent elements) and so Y is

precisely the spectrum SpecC[X]G.
(iii) The morphism π yields a homomorphism p∗ : C[Y ] → C[X] with image con-

tained in C[X]G; this translates into our assertion. �

Remark 16. Note that the above map π is uniquely determined by the universal
property (iii); it is called a categorical quotient (for affine varieties).

Remark 17. The assertion (i) of the previous theorem is usually called Hilbert’s
Theorem if X is a G-module.

15. LECTURE 15, Geometric Invariant Theory for Reductive Groups.

Remark 18. The map π : X → X//G (see Theorem 9(iii)) is constant on orbits, i.e.,
if x, y ∈ X are such that G · x = G · y, then π(x) = π(y). Indeed, this is easy to see as
π is G-equivariant (why?) and hence, π(gx) = π(x) for any g ∈ G. This means that π
is a constant on orbits. But since π is a morphism, π−1(π(x)) is closed in X. Moreover,
G · x ⊂ π−1(π(x)) which implies that G · x ⊂ π−1(π(x)). The claim follows.

Theorem 10. Let G be a reductive group that acts on affine variety X. If two orbit
closures G · x and G · y, x, y ∈ X do not intersect, then there is an invariant f ∈ C[X]G

such that restriction of f to G · x is zero and restriction of f to G · y is one.

Proof. Let a ⊂ C[X] be the ideal of functions vanishing on the closure G · x, and
similarly, let a′ ⊂ C[X] be the ideal of functions vanishing on the closure G · y. We
consider the ideal a + a′ generated by a and a′. Since G · x ∩ G · y = ∅, by Hilbert’s
Nullstellensatz, we have a + a′ = C[X].

The subsets G · x,G · y ⊂ X are preserved by the action of G, and this means
that the ideals a, a′ ⊂ C[X] are subrepresentations of G. Then the homomorphism of
C[X]-modules

a⊕ a′ → C[X], (a, a′) 7→ a+ a′,

is also a homomorphism of G-representations. As we have seen above it is surjective,
and so by linear reductivity (Remark 15) the map

(a ∩ C[X]G)⊕ (a′ ∩ C[X]G)→ C[X]G,

is also surjective. In particular, there exist invariants f ∈ a∩C[X]G and f ′ ∈ a′∩C[X]G

satisfying f + f ′ = 1. The function f vanishes on the orbit G · x and takes the value 1
on the orbit G · y, so we are done. �
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We can conclude that the algebraic quotient X//G is an affine variety (see Theorem
9) that is the set of G-orbits of X modulo the relation by which we identify two orbits
of X whenever their orbit closures have non-empty intersection (follows from Theorem
10 and Remark 18). Moreover, C[X//G] = C[X]G. If all orbits are closed (e.g., if G is
finite) then X//G is the usual orbit space. In general the quotient X//G is in a certain
way the best algebraic approximation to the orbit space X/G;

Example 25. Let C∗ acts on C2 by λ · (x, y) = (λx, λy). The C∗-orbits are the
punctured lines {(λx, λy) | λ ∈ C∗} for (x, y) 6= (0, 0) as well as the origin {(0, 0)}. The
set theoretical quotient is simply the set of these orbits. However, this set of orbits does
not have a structure of an affine variety. Moreover, there is the notion of a variety
which is more general than the notion of an affine variety. And the set theoretical
quotient C2/C∗ does not have a structure of a variety.

Let us now look at orbits {(λx, λy) | λ ∈ C∗} for (x, y) 6= (0, 0) and the origin
{(0, 0)} and discover which of these orbits are closed in C2. It is clear that the origin
{(0, 0)} ⊂ C2 is closed (please, check it). Moreover, it is not difficult to see that
punctured lines {(λx, λy) | λ ∈ C∗} are never closed in C2. Therefore, there is the
unique closed orbit. Hence, C2//C∗ is a point. Alternatively, this can be seen by looking
at the invariant ring C[C2]C

∗
= C (see page 4) and we conclude that C2//C∗ = SpecC

that is a point.

Example 26. Let C∗ acts on C2 by λ · (x, y) = (λx, λ−1y). The C∗-orbits are
(i) the origin {(0, 0)};
(ii) the punctured x-axis {(x, 0) | x ∈ C∗};
(iii) the punctured y-axis {(0, y) | y ∈ C∗};
(iv) for each c ∈ C∗, the conic {(x, y) | xy = c}.
It is not difficult to see that orbits from (iv) and (i) are closed. Moreover, the orbits

from (ii) and (iii) are not closed as the closure of {(x, 0) | x ∈ C∗} is {(x, 0) | x ∈ C}
and analogously the closure of {(0, y) | y ∈ C∗} is {(0, y) | y ∈ C}. Hence, the closed
orbits are parameterized by C (which is affine variety). In contrast, the set theoretical
quotient C2/C∗ is the set of all orbits that does not have a structure of an affine variety.

As we have seen in Example 4, C[C2]C
∗

= C[x, y]C
∗

= C[xy]. Hence, C2/C∗ =
Spec(C[xy]) is an affine line C and the quotient map is given by

C2 → C, (x, y) 7→ xy.

Exercise 13. Consider the set M2(C) of 2× 2 matrices over C, embedded in C4 by(
w x
y z

)
7→ (w, x, y, z).

Let G = GL(2,C) act on X by conjugation. That is, for A ∈ G, M ∈ M2(C), define
A·M = AMA−1. Then we have M2(C)//G = SpecC[w, x, y, z]G. We know for matrices
that the determinant and trace are invariant under conjugation. These are the polyno-
mials det = wz − xy and tr = w + z, so we have C[wz − xy,w + z] ⊂ C[w, x, y, z]G.
Please, show that

C[wz − xy,w + z] = C[w, x, y, z]G.
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We have seen in Example 25 and Example 26 different actions of C∗ on C2. The
next statement classifies all C∗-actions on C2.

Proposition 17. Let C∗ acts on C2. Then one can choose coordinates in C2 such that
t · (x, y) = (tax, tby), where t ∈ C∗, (x, y) ∈ C2 and a, b ∈ Z, |a|, |b| are coprime.

Remark 19. What about classification of C∗-actions on C3? This problem is very
complicated and such actions where classified only in 1996 by Kaliman, Koras,
Makar-Limanov, and Russell.

As we have already seen, if G is a reductive group, then the quotient Cn//G is an
affine variety. It turns out that if Cn//G is one-dimeniosnal, i.e., if Cn//G is a curve,
then such a curve is isomorphic to an affine line C. If the quotient is 2-dimensional,
then the situation becomes much more complicated.

Theorem 11 (Gurjar, Koras, and Russell, 2008). Let G be a reductive algebraic group
acting algebraically on an affine space Cn. If X = Cn//G is two-dimensional, then X
is isomorphic to C2/G for a finite group G (we can assume that G ≤ GL(C2)).

We know essentially nothing about 3-dimensional quotients Cn//G.

16. LECTURE 16, Unipotent Groups and their Invariants.

By Corollary 8 we know that any affine algebraic group can be embedded into some
GLn(C). Therefore, we can identify G with its image in GLn(C). We have seen above
(see Definition 22) that an element g of an algebraic group G is called unipotent if
the closure of the group generated by g is isomorphic to the additive group C+. One
can show that this is equivalent to the fact that g can be written as a sum 1 + n for
some nilpotent matrix n, i.e., matrix such that nk is a zero matrix for some natural k.

Theorem 12 (Lie-Kolchin theorem). Let G be a unipotent subgroup of GL(W ) for
some non-zero finite dimensional vector space W . Then G has a common eigenvector
in W .

Proof. Identify W with Cn where n = dimW . We use induction on n. The result
is obvious if dimW = 1 (every v ∈ W is a common eigenvector of G), so assume
dimW > 1. Suppose W has a proper non-zero subspace V stable under G. Then by
induction hypothesis there exists a common eigenvector v ∈ V ⊂W for G.

Therefore we may assume that W is an irreducible G-module. We need the following
(which we present here without proof)
Theorem of Burnside: if R is a subalgebra of the associative algebra of endomor-
phisms End(W ) of a vector space W which acts irreducibly on W , then R = End(W ).

Now, the assumption that G is unipotent implies that trace Tr(g) = Tr(1) = dimW
for all g ∈ G (please, check it!). Writing g as 1 + n with n nilpotent, we have for all
h ∈ G:

Tr(h) = Tr(gh) = Tr(h+ nh) = Tr(h) + Tr(nh).

Therefore, Tr(nh) = 0. Now, the C-linear combinations of the elements of G must
also satisfy this. These form a subalgebra R of End(W ), which acts irreducibly on
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W since G does. Burnside’s theorem then implies that for all h ∈ End(W ) and for
all g = 1 + n ∈ G, Tr(nh) = 0. Taking h to be the standard unit matrices Eij , we
see that we must have n = 0 (by Eij , we mean the matrix whose (i, j)th entry is 1
and all other entries are 0). Hence G = 1 and since W is irreducible, dimW = 1, a
contradiction. �

Corollary 9. If G ≤ GLn is a unipotent group, then G is conjugate to a subgroup of
upper triangular matrices Un ⊂ GLn(C).

Proof. By Theorem 12, G has a common eigenvector v ∈ W = Cn. Let W1 be a
vector space generated by 〈v〉. Then G acts on W/W1, the image of G in GL(W/W1)
is again unipotent. Induction on dimW then allows us to construct a basis of W with
respect to which elements of G are represented by upper triangular matrices. The claim
follows. �

Next we present a classical result of B. Kostant and M. Rosenlicht proved for
the first time in 1961.

Theorem 13. A unipotent group U acts on affine variety X with closed orbits, i.e.,
for any x ∈ X, U · x ⊂ X is a closed subset.

Proof. Consider the orbit O = U · x and its closure Y = U · x that is affine subvariety
of X. Assume O 6= Y . By Proposition 16, Z = Y \O is a closed subset of X. Consider
a nonzero polynomial f ∈ C[Y ] with the property that the restriction of f to Z is a
zero polynomial. Consider an irreducible U -submodule M of C[Y ] that contains f . By
Theorem 12 there exists a nonzero g ∈MU . In particular, since g is U -invariant, it has
to be constant on O and hence constant on O. As g takes the value zero on Z, it has
to zero everywhere on Y . This contradicts the choice of g and proves the theorem. �

Remark 20. It is not hard to prove that the property of acting with closed orbits on
affine varities characterizes unipotent groups among connected algebraic groups.

We have seen in Theorem 9 that for any reductive group G and G-module W , C[W ]G

is finitely generated. It was not known until 1958 if a similar result holds for unipotent
groups. In 1958 Nagata gave the following example which shows that for a unipotent
group U and a certain U -module W , C[W ]U is not finitely generated.

Example 27 (counter example of Nagata to Hilbert’s fourteenth problem).
This is the counter example of Nagata to Hilbert’s fourteenth problem. Take ai,j alge-
braically independent over Q, where i = 1, 2, 3 and j = 1, 2, . . . , 16. Let G ⊂ GL(32,C)
be the group of all block diagonal matrices

A1

A2

. . .
A16

 ,

where

Aj =

(
cj cjbj
0 cj

)
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for j = 1, 2, . . . , 16. Here the cj and bj are arbitrary complex numbers such that

c1c2 . . . c16 = 1 and
∑16

j=1 ai,jbj = 0 for i = 1, 2, 3. Then one can prove that C[x1, . . . , x32]G

is NOT finitely generated.

Remark 21 (Quotient by unipotent groups). By Theorem 13 all orbits of unipotent
group U that acts on an affine variety X are closed. Then one could think that X/U =
X//U . The problem is that C[X]U is not neccesarily finitely generated. But even if
C[X]U is finitely generated, then X/U not necessarily coincides with X//U . Actually,
X/U ⊂ X//U is an open subset.

Remark 22. If G is a so-called semisimple algebraic group (i.e., product of simple
algebraic groups1) or a unipotent group and Cn//G is two-dimenisonal, then Cn//G is
isomorphic to an affine plane C2.

1algebraic group is called simple if it does not contain closed normal nontrivial subgroups
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